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Abstract

Gaussian process latent variable models (GPLVM) are a flexible and non-linear
approach to dimensionality reduction [Lawrence, 2004], through a classical un-
supervised learning paradigm. The Bayesian incarnation of the GPLVM uses a
variational framework, where the posterior over latent variables is approximated
by a well-behaved variational family, a factorised Gaussian [Titsias and Lawrence,
2010] yielding a tractable lower bound. However, the non-factorisability of the
lower bound prevents truly scalable inference. This paper has three main contri-
butions. (1) We recast the Bayesian GPLVM model to derive a doubly stochastic
evidence lower bound amenable to stochastic variational inference (SVI) in the
latent variable setting. (2) We exploit the SVI framework to allow training of the
Bayesian GPLVM when over half the data is missing. (3) We amortise variational
inference with an encoder that retains probabilistic representations in latent space.
We demonstrate the model’s performance by benchmarking against the canonical
sparse GPLVM for high dimensional data examples.

1 Introduction

Gaussian processes (GPs) represent a powerful non-parametric probabilistic framework for perform-
ing regression and classification. The inductive biases are controlled by a kernel function [Rasmussen
and Williams, 2006]. The Gaussian process latent variable model (GPLVM) [Lawrence, 2004] paved
the way for GPs to be used in unsupervised learning tasks like dimensionality reduction and structure
discovery for high-dimensional data. It provides a probabilistic mapping from (an unobserved) latent
space (X) to data-space (Y). The GP acts as a decoder; the smoothness of the mapping is controlled
by a kernel function. Many traditional dimensionality reduction models learn a projection of high
dimensional data to lower dimensional manifolds [e.g. Jolliffe, 1986; Roweis and Saul, 2000]. In the
GPLVM the direction of the mapping is reversed.

The standard GPLVM is a multi-output regression model whose the inputs are unobserved during
training. The canonical formulation treats the unknown latent variables as point estimates and
optimizes the marginal likelihood jointly with the covariance hyperparameters (θ). Techniques to
apply Gaussian processes to very large datasets were introduced in [Hensman et al., 2013] which
demonstrated how stochastic variational inference (SVI) [Hoffman et al., 2013] can be used with
sparse GPs in a regression context. The key idea is to re-formulate the evidence lower bound (ELBO)
Titsias [2009] in a way that factorizes across the data enabling mini-batching for gradients. The
canonical formulation can be made sparse by using the regression based lower bound from [Hensman
et al., 2013] and optimising for latents X. We call this model the Sparse GPLVM and POINT for short.
We also study the performance of maximum-a-posteriori (MAP) in this framework.

The Bayesian formulation of the GPLVM in [Titsias and Lawrence, 2010] variationally integrates out
latent variables, providing principled uncertainty around the latent encoding. The sparse variational
formulation relies on inducing variables [Titsias, 2009] that admit a tractable lower bound while
providing computational savings. The Bayesian formulation also allows the dimensionality of the
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Table 1: Existing approaches for Inference in GPLVMs. Our work studies the scalable alternative with SVI
across all these models.

Reference Decoder (X → Y ) Latent Variable q(X) Encoder (Y → X) Training Method
Lawrence [2004] GP point est. 7 Gradient based opt.

Lawrence and Quiñonero Candela [2006] GP point est. 3 Gradient Based opt.
Titsias and Lawrence [2010] GP Gaussian 7 Variational Inference

Bui and Turner [2015] GP Gaussian 3 SVI
This work GP point / Gaussian 7/3 SVI

latent space to be automatically determined by maximisation of the ELBO. However, this ELBO
does not factorise across data points [Titsias and Lawrence, 2010]. We extend the big data regression
setting proposed in Hensman et al. [2013] to the unsupervised latent variable model setting. We re-
formulate Bayesian GPLVM for scalable inference using SVI by using a structured doubly stochastic
lower bound [Salimbeni and Deisenroth, 2017]. We denote this model as Bayesian SVI or B-SVI for
short.

The smooth GP decoder mapping ensures that points close in latent space are mapped to points close
in data space. The notion of an encoder for GPLVMs was introduced in [Lawrence and Quiñonero
Candela, 2006] where an additional mapping (called the back-constraint by the authors) was learnt
expressing each latent point in the evidence (marginal likelihood) as a function of its corresponding
data point. This incarnation ensured that data-space proximities were preserved in latent encodings.
Hence, GPLVMs can be put on the same footing as autoencoding models with an encoder mapping
from data to latent space and a decoder mapping from latent to data space. This is the third model we
include in our compendium which we call Autoencoded Bayesian SVI or AEB-SVI.

In summary, our main contributions are:
• Comparison of a suite of GPLVM models which differ in the form of the latent variable but

share the same inference strategy (SVI). We conduct experiments with the SVI-compatible
doubly stochastic evidence lower bound for the point, maximum-a-posteriori (MAP) and
Bayesian SVI models enabling efficient and scalable inference.

• Conduct experiments with a general amortised inference model which models the parameters
of the Gaussian variational latent distribution using a deep neural network encoder.

• Demonstrate how training in these models is compatible with partially and massively missing
data settings1 frequently embodied in real-world datasets.

2 Background

2.1 Bayesian GPLVM

In the sparse variational formulation underlying the Bayesian GPLVM we have a training set com-
prising of N D-dimensional real valued observations Y ≡ {yn}Nn=1 ∈ RN×D. These data are
associated with N Q-dimensional latent variables, X ≡ {xn}Nn=1 ∈ RN×Q where Q < D provides
dimensionality reduction [Lawrence, 2004]. The forward mapping (X −→ Y) is governed by GPs
independently defined across dimensions D. The sparse GP formulation describing the data is as
follows:

p(X) =

N∏
n=1

N (xn;0, IQ), (1)

p(F|U,X,θ) =

D∏
d=1

N (fd;KnnK
−1
mmud,Knn −KnmK

−1
mmKmn), (2)

p(Y|F, X) =

N∏
n=1

D∏
d=1

N (yn,d;fd(xn), σ2
y), (3)

where F ≡ {fd}Dd=1, U ≡ {ud}Dd=1 and yd is the dth column of Y. Knn is the covariance matrix
corresponding to a user chosen positive-definite kernel function kθ(x, x′) evaluated on latent points
{xn}Nn=1 and parameterised by hyperparameters θ. The kernel hyperparameters are shared across all
dimensions D.

1bulk of the dimensions missing for every data point yielding a very sparse data matrix.
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The inducing variables per dimension {ud}Dd=1 are distributed with a GP prior ud|Z ∼ N (0,Kmm)
computed on inducing input locations Z ∈ RM×Q which live in latent space and have dimensionality
Q (matching xn).

The variational formulation,

p(F,X,U|Y) ≈ q(F,X,U) =
[ D∏
d=1

p(fd|ud, X)q(ud)
]
q(X) (4)

admits a tractable lower bound to the marginal likelihood p(Y|θ) where the inducing variables are
integrated out or collapsed [Titsias and Lawrence, 2010].

The original bound incorporated the optimal Gaussian variational distribution q∗(ud) and a diagonal
Gaussian variational distribution, q(X) =

∏N
n=1N (xn;µn, snIQ),. However, every gradient step

needs a pass over the full dataset of size N . In the section below we describe the Bayesian SVI
model which uses the same variational formulation as above except for the treatment of the inducing
variables per dimension ud. Instead of using their optimal analytic form, we learn their parameters
through direct optimisation of the uncollapsed lower bound.

3 Generalised GPLVM with SVI

For the SVI bound we keep the representation of U uncollapsed; we learn a mean and dense covariance
matrix numerically using stochastic gradient methods on q(ud) ∼ N (md, Sd).

3.1 Is SVI applicable?

Stochastic Variational Inference (SVI) [Hoffman et al., 2013] pre-requisites a joint probability model
with a set of global and local hidden variables where the local variables are conditionally independent
given the global variables. GP models for regression in their standard form do not admit such a
factorisation and neither do they have global variables, however Hensman et al. [2013] showed how
the SVI machinery becomes applicable by introducing global inducing variables u and variationally
marginalising f . We assume a single output dimension in this sub-section hence drop the dimension
index d.

ln p(y|u) = ln

∫
p(y|f)p(f |u)df ≥ Ep(f |u)[ln p(y|f)] , ln p̃(y|u) (5)

where p̃(y|u) factorises if the likelihood p(y|f) does.

p̃(y|u) =

N∏
n=1

N (yn|kTnK−1
mmu, σ

2
n) exp

{
− 1

2σ2
y

(knn − kTnK−1
mmkn)

}
(6)

where kn is the nth column of Kmn (only dependent on point xn).

We now have a model with global variables and a likelihood which is conditionally independent
across observations given the global variables u. The regression model does not need local hidden
variables. However, in the latent variable setting we have a latent variable xn per training point (see
supplementary for graphical models.)

3.2 Doubly Stochastic Evidence Lower bound (DS-ELBO)

Doubly stochastic was proposed by Titsias and Lázaro-Gredilla [2014] and deployed in deep Gaussian
process regression by Salimbeni and Deisenroth [2017]. Here we use doubly stochastic inference in
the unsupervised latent variable setting, where the aim is dimensionality reduction.

Keeping with the formulation in section 2.1 we write down the rudimentary ELBO,

L = p(F|U,X)q(U)q(X) log
p(Y|F,X)p(U|Z)p(X)

q(U)q(X)
dFdUdX (7)

Making the parameterisation of the variational distributions explicit for clarity, we denote the
variational distribution over the latent points as qφ(xn) where φ = {µn, sn} and the variational
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distribution over the inducing variables as qλ(ud) where λ = {md, Sd}. We re-write equation 7 with
the familiar decomposition involving the expected log-likelihood term and KL terms,

L(D) = Eq(.)[log p(Y|F,X)]−KL(q(X)||p(X))−KL(q(U)||p(U)) (8)

= Eq(.)[
∑
n,d

logN (yn,d;fd(xn), σ2
y)]−

∑
n

KL(qφ(xn)||p(xn))−
∑
d

KL(qλ(ud)||p(ud|Z))

=
∑
n,d

Eqφ(xn)[Ep(fd|ud,xn)qλ(ud)[logN (yn,d;fd(xn), σ2
y)]︸ ︷︷ ︸

Ln,d(xn,yn,d)=Ln,d

]−
∑
n

KL(qφ(xn)||p(xn))

(9)

−
∑
d

KL(qλ(ud)||p(ud|Z))

The expected log-likelihood term for a single data point (n) and dimension (d) - Ln,d(xn, yn,d) is
reduced to,

Eqφ(xn)[Ln,d] =

∫
qφ(xn)

[∫
qλ(ud)

[∫
p(fd|ud,xn) logN (yn,d;fd(xn), σ2

y)dfd(xn)

]
dud

]
dxn

= logN (yn,d| 〈k(xn, Z)〉qφ(xn)︸ ︷︷ ︸
Ψ

(n,·)
1

K−1
mmmd, σ

2
y)− 1

2σ2
y

Tr(〈k(xn,xn)〉qφ(xn)︸ ︷︷ ︸
ψn0

) (10)

+
1

2σ2
y

Tr(K−1
mm 〈k(Z,xn)k(xn, Z)〉qφ(xn)︸ ︷︷ ︸

Ψn2

)− 1

2σ2
y

Tr(SdK−1
mm 〈k(Z,xn)k(xn, Z)〉qφ(xn)︸ ︷︷ ︸

Ψn2

K−1
mm)

where we analytically perform the integration w.r.t qλ(ud) and the inner-most integral w.r.t
p(fd|ud,xn) is the same as eq. 6 leaving behind the expectations w.r.t qφ(xn) which are han-
dled numerically with Monte Carlo estimation.

Ψ(n,·) ≈ 1

J

J∑
j=1

k(x(j)
n , Z), Ψn

2 ≈
1

J

J∑
j=1

k(Z,x(j)
n )k(x(j)

n , Z), ψn0 ≈
1

J

J∑
j=1

k(x(j)
n ,x(j)

n ) (11)

where x(j)
n ∼ qφ(xn); the samples xj are drawn using the reparameterization trick Kingma and

Welling [2014] where we sample ε(j) ∼ N (0, IQ) and x(j)
n = µn + sn � ε(j).

Eqφ(xn)[Ln,d] '
1

J

J∑
j=1

Ln,d(x(j)
n , yn,d) =

1

J

J∑
j=1

Ln,d(µn+sn�ε(j), yn,d) =
1

J

J∑
j=1

Ln,d(gφ(ε(j)), yn,d)

We denote the approximate ELBO as L̂(D),

L̂(D) =
∑
n

∑
d

L̂n,d︷ ︸︸ ︷
1

J

J∑
j=1

Ln,d(gφ(ε(j)), yn,d)−
∑
d

KL(qλ(ud)||p(ud|Z))−
∑
n

KL(qφ(xn)||p(xn))

(12)

The sparse GPLVM model in experiments comprises of just the first two terms in eq. 12, while the
MAP method excludes the KL divergence term for latents (xn) in exchange for solely the prior term
p(xn). Finally, in order to speed-up computation we use mini-batches, where in each gradient step
we take a random sample B < N of the data-points DB ≡ {yb}Bb=1,DB ⊂ D to construct a scalable,
differentiable and unbiased estimator optimised with standard stochastic gradient methods. The KL
terms are analytically tractable due to the choice of the Gaussian variational family for qφ(xn) and
the optimal (Gaussian) variational family for qλ(ud).

The method is known as doubly stochastic variational inference due to the two-fold stochasticity
attributed to computing the expectations with Monte Carlo and due to mini-batching.
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Algorithm 1: Bayesian GPLVM with Doubly Stochastic Variational Inference (B-SVI)

Input: ELBO objective L, gradient based optimiser optim(), training data D = {yn}Ni=1

Initial model params:
θ (covariance hyperparameters for GP mappings fd and data noise variance σ2

y),
Initial variational params:
Z ∈ RM×Q (inducing locations),
φ = {µn, sn}Nn=1 (local variational parameters - xn ∼ N (µn, snIQ), µn, sn ∈ RQ )
λ = {md, Sd}Dd=1 (global variational parameters - ud ∼ N (md, Sd),ud ∈ RM , Sd ∈ RM×M )

while not converged do
• Choose a random mini-batch DB ⊂ D.
• Sample J samples from the noise distribution ε(j) ∼ N (0, IQ).
• Form a mini-batch estimate of the ELBO:

L̂(DB) =
N

B

(∑
b

∑
d L̂b,d −

∑
b KL(qφ(xb)||p(xb)

)
−
∑
d KL(qλ(ud)||p(ud|Z))

• Gradient step: Z,θ, σ2
y, {µb, sb}Bb=1{md, Sd}Dd=1 ←− optim(L̂(DB))

end
return Z,θ, φ, λ

3.3 Amortised Inference with Encoders

The GPLVM model provides a probabilistic non-linear mapping from latent space X to data space Y.
A probabilistic representation in the latent space provides several advantages - 1) a representation
of uncertainty in the latent encoding can be valuable for downstream tasks and 2) we can sample
points from the latent space to reconstruct data in the observation space by passing them through the
trained decoder. However, the GPLVM inherently preserves dissimilarities in data space. It ensures
that two points which are apart in data space, also apart in latent space. This is due to the smooth GP
mapping from X→ Y. Local distances are preserved in the latent space ensuring that points close2

in latent space recover observations that are close in data space. Lawrence and Quiñonero Candela
[2006] and Bui and Turner [2015] additionally account for this feature of data distance preservation
by introducing an encoder within the GPLVM model (see also [Dai et al., 2016]). Parameters of
the variational distribution of each latent point xn are reparameterised as a function of the data
in the objective, thereby introducing a dependency for each latent point on its corresponding data
point. This function is usually referred to as the back-constraint and its parameters are global, i.e.
shared between all the data points. This allows for fast amortised inference and constant time test
predictions.

AEB-SVI: In this variational model, the mean and variance of the base Gaussian distribution are
parameterised as outputs of individual neural networks Gφ1 and Hφ2 with network weights φ1 and
φ2. The network weights are shared across all the data points enabling amortised learning [Bui and
Turner, 2015]. The key property of this parameterisation is that it learns a dense covariance matrix
(through Cholesky decomposition) per data-point thereby capturing correlations across dimensions in
latent space.

q(X) =

N∏
n=1

N (xn;Gφ1
(yn), Hφ2

(yn)THφ2
(yn)) (13)

3.4 Predictions

When unseen high-dimensional points arrive in data space y∗ we are interested in computing the latent
point distribution q(x∗) per test point y∗ where we have access to the trained variational parameters
(φ,Z, λ) and model hyperparameters (θ). One motivation for auto-encoder driven models is that we
have constant-time O(1) test predictions. Given a test point y∗, we use the set of global encoder
weights (φ1, φ2) to obtain the posterior approximation q(x∗) (as in eq. 13). In the Bayesian SVI
model (Algorithm 1.) we can’t obtain the distributional parameters for q(x∗) deterministically, instead
we re-optimise the ELBO with the additional test data point y∗ while keeping all the global and

2For a stationary kernel, this would be closeness in a sense of Euclidean distance.
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model hyperparameters frozen at their trained values. Note that since the SVI ELBO factorises across

data points, L({yn}Nn=1,y
∗) =

N+1∑
n=1

D∑
d=1

Ln,d, the gradients to derive the distributional parameters

of the test point N (µ∗, s∗IQ) only depend on the component terms.

3.5 Training with missing dimensions

A key motivation for our framework is dealing with missing data at training time. Most machine
learning algorithms are designed to be deployed on carefully curated tables of data with a fixed
number of features. If data is missing, it is often dealt with through EM algorithms which can deal
with missingness up to around 30%. In the real world the situation is often very different. Important
data sets such as electronic health records can have 90% or more missing values. In these domains the
objective function becomes dominated by the missing values and learning fails to occur [Corduneanu
and Jaakkola, 2002]. We consider a data set-up where every vector y has an arbitrary number of
dimensions missing and there is no constraint or structure about their missingness. Our training
procedure leverages the marginalisation principle of Gaussian distributions and the fact that the data
dependent terms of the SVI ELBO factorise across data points and dimensions. This means we can
trivially marginalise out the missing dimensions ya, because each individual data point y is modelled
as a joint Gaussian. Consider a high-dimensional point y which we split into observed, yo and
unobserved ya dimensions,∫ ∏

d∈a

∏
d∈o

p(ya,yo|ud,X)dya =
∏
d∈o

p(yo|ud,X), (14)

where a and o denote the indices of missing and observed dimensions respectively and all dimensions
are given as, D = a ∪ o. ud ∈ RM denote the inducing variables which ensure conditional
independence. The latent variables per data point xn are informed by the observed dimensions only,
while the M inducing variables per dimension uds are informed by all the data points which have the
observed dimension. The elegance of this framework is that there is no major change in the training
procedure as the ELBO eq. 12 sums over all observed dimensions per data point. We can also easily
reconstruct the missing training dimensions by decoding the mean of the optimised variational latent
distribution q(x) = N (µ∗, s∗IQ).

p(ya∪o|yo) =

D∏
d=1

N (yd;fd(µ
∗), σ2

y), (15)

where fd is a draw from the sparse GP prior eq. 2 with covariance matrices computed with optimised
model and variational parameters. This set-up reflects real-world data which is often sparse with
many missing and few overlapping dimensions across the full dataset. The experiments in section
4.2 demonstrate the reconstruction ability of Bayesian SVI when faced with missing dimensions
at training time. The missing data framework is not immediately compatible with auto-encoding
models as every latent point xn is expressed as a function of the data point yn. However, set encoders
[e.g Qi et al., 2017; Vedantam et al., 2017; Ma et al., 2018] can also be seamlessly integrated as the
auto-encoding component with the GPLVM. We defer this to future work.

4 Experiments

4.1 Ablation Study: Benchmarks

Models: Our experiments implement four incarnations of the GPLVM model namely, POINT which
refers to the Sparse GPLVM, MAP which refers to the sparse GPLVM with a prior over latent
variables xn, the Bayesian SVI model B-SVI and AEB-SVI which refers to the Autoencoded
Bayesian GPLVM. For each model we record the training and test reconstruction error (RMSE)
and final ELBO loss. Full details about the experimental set-up are enclosed in the supplementary
material.

Data set-up: The multi-phase Oilflow data [Bishop and James, 1993] consists of 1000, 12d data
points belonging to three classes which correspond to the different phases of oil flow in a pipeline.
The qPCR data contains 48 dimensional single-cell data obtained from mice [Guo et al., 2010] where
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each dimension corresponds to a gene. Cells differentiate during their development and these data
were obtained at various stages of development which contribute 10 categories/classes to which each
of the cell belongs. We use a 80/20 split for training/testing and report test performance with ± 2
standard errors over three optimization runs.

Table 2: Test RMSE for datasets with ± standard error across 3 optimisation runs. Z denotes the number of
inducing variables used per dimension and Q denotes the dimension of the latent space.

Dataset N / d Z Q POINT MAP B-SVI AEB-SVI
Oilflow 1000 / 12 25 10 0.341 (0.008) 0.569 (0.092) 0.0925 (0.025) 0.067 (0.0016)
qPCR 450 / 48 40 11 0.624 (0.027) 0.589 (0.016) 0.554 (0.017) 0.539 (0.004)

Figure 1: Top: The 2d latent space corresponding to the dominant dimensions learnt by each model.
Bottom: The inverse lengthscales learnt by each model specification. We include a similar report for
qPCR in the supplementary.
We trained each of the 4 models on two high-dimensional datasets and summarise results in table
2. The 2d projections of the latent space clearly show that all variants are able to discover the class
structure. It is important to note that unlike previous versions these models do not require PCA
initialisation and all models were initialised randomly. In order to highlight certain features, the latent
dimensionality (Q) was kept fixed across all models.

POINT and MAP overfit as can be seen from the magnitude of the inverse lengthscales across all the
latent dimensions. Both POINT and MAP find all the latent dimensions relevant. Conversely, B-SVI
and AEB-SVI identify two or three dominant dimensions to represent the data.

The training/test error comparison 2 provides further evidence of overfitting in the point methods.
The quality of the 2d latent projection of training data using the fully trained model might hide the
overfitting effects as it is extremely effective at disentangling class structure in training data. However,
it is important to look beyond the quality of the 2d projection before passing them to downstream
tasks.

We show additional analysis in the supplementary where the Bayesian methods with SVI don’t
overfit even when we match the latent space dimensionality to that of the data space. This analysis
underscores the importance of the KL term over latents in ELBO objective. Mathematically, the
inclusion or exclusion of this term is the main fundamental difference in these formulations. It is
further interesting to note that MAP underperforms Point in both examples and the presence of solely
the prior term in the SVI ELBO leads to worse performance than canonical optimisation for point
estimates.

4.2 Missing data: Reconstructing structured images

The focus of this experiment is to qualitatively assess how the models capture uncertainty when
training with missing data in structured inputs. We use 70000 training samples from the MNIST
digits dataset [LeCun et al., 2010] with ≈ 60% of the pixels missing at random in each digit. Each
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Figure 2: Left: The train and test RMSE per model. Right: The final converged negative ELBO
loss. Note that the ELBO loss formulation is different across the point models and the only identical
comparison is between the B-SVI and AEB-SVI models.

image has 768 pixels yielding a 768d data space. The image data set [Roweis and Saul, 2000]
contains ≈2000 images of a face taken from sequential frames of a short video. Each image is of
size 20x28 yielding a 560d data space. Fig. 3 summarises sample generation from the learnt 2d
latent distribution. Note that this reconstruction experiment differs from the less challenging test-time
missing data which has been demonstrated in several works Titsias and Lawrence [2010]; Gal et al.
[2014]. We include results for test-time missing reconstruction in the supplementary while focussing
on the training-time missing data scenario here.

Figure 3: Top Row: Brendan faces reconstruction task with 39% missing pixels. Bottom row: MNIST
reconstruction task where the digits were trained on partially observed images. In both rows the left column
denotes ground truth data, the center column denotes a subset of the training data and the right column denotes
reconstructions from a 2d and 5d latent distribution for MNIST and Brendan respectively. We include more
examples in supplementary material.

To demonstrate the versatility of the reconstruction task we tested the method on several examples
of the walking human pose from the CMU motion capture database. We split up these motions into
four sections, and remove an assortment of body components. We then try to recreate the entire body
movement using B-SVI using the learnt latent means. A sample reconstruction is shown in fig. 4.

Figure 4: The reconstruction of a single high-dimensional human pose.

4.3 Massively Missing data

In this section we demonstrate how the B-SVI model can be used to train with massively missing data.
We define the massively missing data to be when greater than 90% of the values are missing. We train
in a purely unsupervised way and demonstrate state-of-the-art test-time prediction performance. Note
that we make no use of ad-hoc zero imputation or meta-features to boost prediction performance. We
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rely on the Gaussian process formalism for hyperparameter tuning, avoiding the need for expensive
cross-validation and tuning which is required for many deep NN architectures. The algorithms only
parameters are the batch size and learning rate. They are set to 100 and 0.001 respectively with the
ADAM optimizer [Kingma and Ba, 2015].

4.3.1 MovieLens100K

The movie lens 100K data has 1682 movies (columns/D) across 943 users (rows/N ) where each user
has rated an average of 20 movies [Harper and Konstan, 2015]. The ratings range from {1, 2, . . . , 5}.
This yields an extremely sparse data grid with 93.8% of the entries missing.3 We learn a 10d latent
distribution for the movie lens data and summarise the test results in table 3. We trained on 90%
users and made predictions for 10% of the users. The test performance captures the ability of the
model to predict a rating for a new user on any of the movies in the database. We reconstruct test
ratings for users and report performance below with baselines from literature.

Table 3: Test RMSE score of B-SVI compared to matrix factorisation method.
Dataset / Method PMF BiasMF NNMF B-SVI
MovieLens100K 0.952 0.911 0.903 0.924

PMF scores were taken from Mnih and Salakhutdinov [2007] and the BiasMF / NNMF scores from
Dziugaite and Roy [2015].

5 Related Work

GPLVM & Variants: The GPLVM model has spawned several variants since its introduction in
Lawrence [2004]. The most fundamental variants are summarised in table 1. Apart from these there
has been a suite of work extending the canonical Bayesian GPLVM model to target different objectives.
[Damianou et al., 2016] provides a rigorous examination of the evidence lower bound in the Bayesian
GPLVM formulation and extends it to multiple scenarios which include high-dimensional time-series
[Damianou et al., 2011] and uncertain inputs for GP regression. The shared GPLVM model [Ek et al.,
2007] considers a generative model with multiple sources of data and learns a shared representation
in the latent space, capable of generating data in the joint observation space. [Gal et al., 2014]
reformulate the Bayesian GPLVM enabling a distributed inference algorithm. Urtasun and Darrell
[2007] use GPLVMs in the context of classification using discriminative priors in latent space and
Urtasun et al. [2008] focus on embedding data in non-Euclidean latent spaces which is useful when
high-dimensional data lie on a natural manifold, e.g. human motion. Other relevant works include
[Dai et al., 2016] which augment a deep GP with a recognition model for latent variable inference.
None of these works use SVI for inference in these models.

Other related work: In terms of applications, the GPLVM has been widely used in the biological
sciences [Ahmed et al., 2019], [Verma and Engelhardt, 2020] and engineering domains, with the most
prominent applications in microarray qPCR datasets to infer the evolution of branching structure in
genes [Campbell and Yau, 2015].

6 Conclusion

This paper introduces a generalised inference strategy for GPLVM models with key properties
like parallelisable inference, auto-encoding for fast test time inference, and the ability to handle
missing data during training. The non-parametric nature of the Gaussian process decoder makes this
framework unique to deep parameteric latent variable models like VAEs. We showed in experiments
that a fully Bayesian training procedure in conjunction with SVI yields state-of-the-art test time
performance. Amortisation with a deep NN encoder introduces local correlations between dimensions
in latent space without hampering test performance. A key characteristic of our model is its ability
to train in the massively missing data regime that is inadequately addressed by modern parametric
machine learning models. The approach can be extended to learn richer variational families in latent
space along with missing data. Future work would focus in that direction.

3each row denotes a user, when a user has not rated a movie the value is NaN.
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to this in the supplementary.

(c) Did you discuss any potential negative societal impacts of your work? [No] Since this
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