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Abstract

This paper examines the use of Support Vector Machines (SVM) as a machine learning tool for classifying the out-
comes of atomic collisions. We demostrate the SVM approach on a simulated dataset provided by ATLAS physicists
which relates to the popular case of the Higgs Boson. The dataset has labelled samples belonging to two classes
– ‘signal’ and ‘background’. The ‘signal’ class represents collisions that indicate the presence of a Higgs particle
and the ‘background’ class represents collisions that result in the creation of particles which are uninteresting from a
Higgs perspective. We demonstrate the feasibility of SVMs in this supervised binary classification task. We show that
hyper-parameter tuning combined with pruning of the training dataset are highly efficient ways to prepare an SVM
for this task. The performance of the classifier in this context is assessed on the basis of a physics motivated metric
called the Approximate Median Significance score (AMS for short). The final solution attains an AMS score of 3.38.
The highest reported AMS score on this dataset is 3.8.

1. Background

In 2012, the ATLAS1 and the CMS2 experiment ob-
served a new particle in the proton-proton collisions at
the LHC (Large Hadron Collider) in CERN. The dis-
covery had a statistical significance of 5σ (five-sigma).
Five-sigma corresponds to a p-value of 3∗10−7, or a 1 in
3.5 million chance that the results obtained were purely
due to chance. In essence, 5σ denotes a high confidence
in the results obtained. The particle, the Higgs boson,
was postulated nearly five decades ago within the frame-
work of the Standard Model (SM) of particle physics.
The existence of this particle provides support to the
theory that a field permeates the universe through which
fundamental particles acquire mass, a theory which is
cardinal for the completeness of the Standard Model.
The proton-proton collisions in the ATLAS detector
produce thousands of collision events per second. Each
collision event is summarised by numeric information
represented by a vector of several dimensions. These
represent the features, as in standard machine learn-
ing applications. CERN have made publicly available a
simulated dataset mimicking the challenges of real col-
lision data. This dataset was used by ATLAS physicists

1A Toroidal LHC Apparatus
2Compact Muon Solenoid

in designing statistical tools that could aid in search of
collisions that indicate the presence of a Higgs. The
goal of this project is to cast this challenge as a super-
vised binary classification problem. The classification
task is to classify collisions which represent the Higgs
signal from those that represent background.

In order to promote collaboration between high energy
physicists and machine learning experts a challenge
(HiggsML challenge for short) was organized by a small
group of ATLAS physicists. It was hosted by Kaggle
at https://www.kaggle.com/c/higgs-boson from
May to September 2014. The simulated dataset used in
this paper was released to the participants for training.
The immediate goal of the challenge was to explore the
potential of advanced classification methods to improve
the statistical significance of the experiment[1].

Although the SVM approach is widely used in binary
classification tasks, there are no articles examining the
use of SVMs on the Higgs dataset. The winning so-
lution of the HiggsML challenge comprised of an en-
semble of multi-layer feed-forward neural networks, the
networks used a set of identical fine-tuned parameters
and only differed only in their initialization training sets
[2]. Other techniques that were popular among partici-
pants were variants of boosted decision trees.
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After an introduction to the physics goal of the problem
in Section 2, the machine learning set-up is described in
Section 3. Section 3.4 and Section 3.6 are particularly
important as they introduce a statistical set-up for quan-
tifying performance of classifiers in the context of the
problem. Section 4 introduces the mathematical frame-
work for SVMs and Section 5.1 describes the imple-
mentation details of the SVM algorithm in the context of
the classification problem. The results are summarised
in Section 6.

2. Physics Motivation

Many particles produced in the proton-proton collisions
are unstable and decay almost instantaneously into other
particles. These particles decay further to more stable
final state particles. These sets of second order and
third order particles represent a decay channel or a de-
cay product. The Higgs boson (H) is unstable and is
observed to have 5 main experimentally accessible de-
cay channels. Each occurs which a certain probability,
this is called the branching ratio. The branching ratios
of the Higgs boson depend on its mass and are precisely
predicted in the standard model. For a SM Higgs of
mass 125 Gev, the first-order decay products and their
respective probabilities are :

Decay Channel Description Branching Ratio
H → bb̄ b quark and its anti-quark 0.58
H → τ+τ− τ lepton and its anti-particle 0.064
H → γγ di-photon channel 0.0023
H → W+W− W boson and its anti-particle 0.14
H → Z0Z0 2 Z bosons 0.016

This paper focuses on the H → τ+τ− decay channel
where the signal events indicate a Higgs decay to two
taus and background events are characterized by the
same tau-tau channel but from decay of a non-Higgs
particle, fig. 1.

Several of the particles produced in the first order de-
cay, decay instantaneously into a cascade of lighter par-
ticles. The surviving particles which live long enough
for their properties to be measured by the detector are
called final-state particles. The different types of par-
ticles and pseudo-particles 3 recorded in the final state
of collisions in the dataset are electrons (e), muons (µ),
hadronic taus, jets and missing transverse momentum.
These are explained below.

3explain pseudo-particles.

2.1. Fundamental and Other particles

Electrons (e), muons (µ) and the tau lepton (τ) are the
three leptons from the standard model. They are ele-
mentary4 particles. Neutrinos are elementary particles
that belong to the lepton family but with a mass that is
tiny compared to other leptons. Neutrinos produced in
the decay escape detection completely

Hadrons are composite particles made up of quarks
and/or antiquarks that are held together by gluons. The
proton is a hadron. When two protons collide, they cre-
ate a spray of hadrons. Jets can be thought of as an en-
semble of hadrons that are created when quarks and glu-
ons try to escape in energetic proton-proton collisions.
Jets are pseudo particles rather than real particles, they
appear in the final state as a collimated energy deposits
with charged tracks [3] [1].

Properties of electrons and muons that appear in the fi-
nal state are measured directly in the detector. Taus, on
the other hand decay immediately after their creation
into either, an electron and two electron neutrinos, a
muon and two muon neutrinos or a bunch of hadrons
(called the hadronic tau) and one tau neutrino.

The three dominant channels of tau decay :

1. τ→ e−νeνe [an electron and two neutrinos]
2. τ→ µ−νµνµ [a muon and two neutrinos]
3. τ→ τ-hadron and ντ [a tau-hadron and a neutrino]

In the dataset provided, the final state consists of a spe-
cific topology :

1. A lepton (we do not know if the lepton is a muon
or an electron)

2. A hadronic tau
3. Neutrinos

Apart from these jets appear in the final state and we
have the measured properties of the leading and sub-
leading jet. The leading jet has a higher transverse mo-
mentum than the sub-leading jet.

4An elementary particle is a particle whose substructure is un-
known
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2.2. Properties of final-state particles

The ATLAS detector measures three properties of each
of the detectable final state particles, they are :

1. The type (lepton, hadronic tau, jets)
2. The energy, E
3. The 3D direction expressed as a vector (px, py, pz)

Note: Neutrinos are not among the detected final-state
particles but appear in the final state. The feature associ-
ated with the undetected neutrinos is the missing trans-
verse momentum. This deserves a detailed explanation
which is provided in the section below.

2.3. Missing transverse momentum

In the 3D reference frame of ATLAS, the z-axis points
along the horizontal beam line. The x − y plane is per-
pendicular to the beam axis and is called the transverse
plane. The transverse momentum is the momentum of
an object transverse to the beam axis (or in the trans-
verse plane). The law of conservation momentum pro-
motes the idea of missing transverse momentum.

The law of conservation momentum states that the to-
tal momentum is conserved in a closed system before
and after a collision. We do know that the initial mo-
mentum in the plane transverse to the beam axis is zero.
Hence, the sum of transverse momentum of all particles
(detected + undetected) post-collision should be zero.

The missing transverse momentum is defined as,
ET

miss = −
∑

i ~pT (i) for visible particles i where ~pT is the
transverse momentum. Essentially, a net momentum of
outgoing visible particles indicates missing transverse
momentum attributed to particles invisible to the detec-
tor, like neutrinos. We know that the final state events
consists of neutrinos and it is reasonable to estimate that
they make up a lot of the missing transverse momentum.

2.4. Physics goal

Based on the properties of the decayed products, the
parent particle (Higgs or non-Higgs) is to be identified.
[1]

Detection of a Higgs particle requires inferring its
known mass (125GeV) from the total momentum of all
its decay products (See Appendix A for the mathemat-
ical description of the invariant mass principle). How-
ever, this mass reconstruction process might not always
be possible due to,

1. The presence of particles (like neutrinos) in the fi-
nal state which escape detection and their proper-
ties cannot be measured.

2. Particles like the Z-boson which have decay signa-
tures very similar to the Higgs and occur a lot more
frequently than the Higgs.

In the section below we elaborate on these points which
explain what makes the Higgs classification a challeng-
ing machine learning problem.

2.5. H → τ+τ−channel

We narrow our focus to the tau-tau decay channel of
the Higgs. In the simulated dataset, the positive (signal)
class represent events in which the Higgs Boson decays
into two taus. The exploration of this specific decay
channel is challenging due to the following reasons.

• The decay into two taus is not a unique channel,
in fact the Z boson can also decay into two taus,
further this happens a lot more frequently than the
Higgs. The precise mass of the Z boson is 91 GeV,
since this is not very far from the mass of the target
Higgs (125 GeV), the two decays produce events
which have very similar signatures and this pre-
vents a clean separation of the parent candidate.

• Taus are heavy and unstable, they decay instanta-
neously. Their dominant decay modes involve neu-
trinos and the presence of these undetectable par-
ticles in their decay make it difficult to reconstruct
the mass of the Higgs on an event by event basis.

2.6. A Note on the Higgs Mass

The mass of the Higgs boson does not directly fall out
of the standard model. In 2011 data collected by the
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Figure 1: The Higgs (H) and Z-boson decaying to two taus

Figure 2: The tau decay to an (i) electron and 2 neutrinos, (ii) muon
and 2 neutrinos, (iii) hadrons and a neutrino

CMS allowed a first thorough investigation into the ex-
istence of the SM Higgs over a wide mass range. The
experiment yielded a first cut excluding the Higgs mass
in the range of 127-600 GeV. This left a narrow win-
dow where a low-mass Higgs could still exist. In the
region below 127 GeV the analysis showed a signal in
the vicinity of 124 GeV, however, more data would be
required to resolve the precise mass and reach a statis-
tical significance of around 5σ. The LHC operation at
8 TeV in 2012 coupled with improved statistical analy-
sis revealed an excess of events resolving to a particle
with a mass of 125 GeV and this was agreed upon by
the collaboration.

3. Machine Learning Challenge

Both background and signal events in our dataset have
the same topology, they are tau-tau events where one tau
decays into a lepton (electron or a muon) and 2 neutri-
nos and the other tau decays into hadrons and a neutrino.
Additionally, properties of jets which originate from a
high energy quark are measured by the detector.

Parent (Higgs / Non-Higgs)→ τ−τ+→ lepton (e− or µ−)
+ Hadronic-tau + (Neutrinos) + Jets

The signal events represent collisions where the par-
ent Higgs was created and background events represent
collisions where the parent particle was not Higgs but
shared the same tau-tau decay channel. The neutrinos
are in parentheses to denote that their properties are not
measured. The only feature pertaining to the neutrinos
is the missing transverse momentum explained in Sec-
tion 2.3.

3.1. The Dataset

The signal events in the dataset have a class label 1
and background events have class label 0. The training
set consists of 250,000 rows, each row denotes a colli-
sion event. The columns represent features which would
serve as inputs to the classifier. The primary features are
described in 3.2. Each row has a non-negative weight
which corrects for the mismatch between the natural
probability of a signal event and the probability applied
by the simulator. The importance weights are not given
as inputs to the classifier as the weight distribution of the
signal and background events are very different and this
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would give away the class label immediately. The prob-
ability of a signal event in the natural world is several
magnitudes lower than that of a background event. The
signal and background events in the simulated dataset
are re-normalized to produce a more balanced classifi-
cation problem where the ratio of signal to background
events is close to 30 : 70. While the weights are not used
as inputs they are used in assessing the performance of
classifiers [4].

3.2. Features

The primary features in the dataset comprise of 3 mea-
sured properties of each of the detectable final-state par-
ticles and pseudo-particles. The measured properties
are :

• Pseudorapidity
• Azhimuth angle
• Transverse momentum

The final-state particles and pseudo-particles are :

1. Hadronic-tau
2. Lepton
3. Leading Jet
4. Sub-leading Jet

A full description of the physical meaning of each of
the measured properties is in Appendix B The list of
primary features, as in [1] :

1. PRI tau pt The transverse momentum
√

p2
x + p2

y

of the hadronic tau.
2. PRI tau eta The pseudorapidity η of the hadronic

tau.
3. PRI tau phi The azhimuth angle of the hadronic

tau.
4. PRI lep pt The transverse momentum

√
p2

x + p2
y

of the lepton (the type of lepton whether electron
or muon is not known).

5. PRI lep eta The pseudorapidity η of the lepton.
6. PRI lep phi The azhimuth angle φ of the lepton.
7. PRI met The missing transverse momentum ET

miss.
8. PRI met sumet The total transverse energy in the

detector.

9. PRI met phi The azhimuth angle φ of the missing
transverse energy.

10. PRI jet num The number of jets, either 0, 1, 2 or
3.

11. PRI jet leading pt The transverse momentum√
p2

x + p2
y of the leading jet.

12. PRI jet leading eta The pseudorapidity η of the
leading jet.

13. PRI jet leading phi The azhimuth angle φ of the
leading jet.

14. PRI jet subleading pt The transverse momentum√
p2

x + p2
y of the sub-leading jet.

15. PRI jet subleading eta The pseudorapidity η of
the sub-leading jet.

16. PRI jet subleading phi The azhimuth angle φ of
the sub-leading jet.

17. PRI jet all pt The scalar sum of the transverse
momentum of all the jets of the events.

Apart from these there are 13 derived features, most of
them are computed by operations on primary features.
For example, feature DER pt h is the vector sum of the
transverse momentum of the hadronic tau, the lepton,
and the missing transverse momentum.

3.3. The formal problem

The description in this section is based on Section 4.1 of
[1]. Let D = {(x1, y1,w1), ...(xn, yn,wn)} be the sample
data set provided by ATLAS, xi ∈ Rd is a d-dimensional
feature vector, yi ∈ {b, s} is the class label and wi ∈ R+

is a non-negative weight associated with each sample.
Let S = {i : yi = s} and B = {i : yi = b} represent index
sets of signal and background events respectively. Also,
ns = |S| and nb = |B| represent the number of signal and
background events in the dataset.

It is important to clarify the role of the weights asso-
ciated with each sample in the training dataset. The
simulated dataset differs from the real-world dataset in
the frequency with which signal events occur. The frac-
tion ns/nb is not reflective of the proportion of the prior
class probabilities P(y = s)/P(y = b), this is because
P(y = s) � P(y = b) and the true distribution of events
in the dataset would yield an extremely unbalanced clas-
sification problem with ns significantly lower than nb.
In order to correct for this bias, all events are weighted
with importance weights reflecting their true probability
of occurrence.
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In each class, the quantities Ns and Nb are defined as,∑
i∈S

wi = Ns and
∑
i∈B

wi = Nb (1)

These constants have physical meaning, they are the ex-
pected total number of signal and background events
during the time interval over which the data has been
recorded (in the dataset used, it is the year 2012).

The objective function that the classifier is trained to op-
timise (described in Section 3.4) depends on the unnor-
malized sum of weights to make the set-up invariant to
the number of simulated signal and background events.

Let h : Rd → {b, s} be an arbitrary binary classifier. The
selection regionH = {x : h(x) = s}, x ∈ Rd is the set of
points classified by h as a signal, these are the predicted
positives. Let Ĥ denote the index set of points that h
classifies as signal,

Ĥ = {i : xi ∈ H} = {i : h(x) = s}

The quantities,

s =
∑

i∈S∩Ĥ

wi and b =
∑

i∈B∩Ĥ

wi (2)

are unbiased estimators of the expected number of sig-
nal and background events selected by the classifier h as
signals. s and b are true positive and false positive rates.

The binary classifier h : Rd → {b, s} calculates a dis-
criminant value f (x) ∈ R, x ∈ Rd which is a score giv-
ing small values for the negative class (background) and
large values for the positive class (signal). One puts
a threshold of choice θ, on the discriminant score and
classifies all samples below the threshold as belonging
to the negative class (b) and all samples with a score
above the threshold as belonging to the positive class
(s).

The discriminant function f (x), also called decision
function, is evolved at the time of training and applied
to test samples to reach classification decisions.

Most classifiers are optimized to improve classification
accuracy on a held-out test set. The classification ac-
curacy is the fraction of correctly classified samples be-
longing to all classes. Using the terminology TP : True

positives, TN : True negatives, P : Positives and N : Neg-
atives, the classification accuracy is defined as the frac-
tion T P + T N

P + N . In the context of our problem a metric
such as the overall classification accuracy is a weak in-
dicator of the performance of a classifier. This is be-
cause the class distributions are skewed rather than bal-
anced. Given that around 70% of the samples belong
to the negative class, a classifier that assigns each sam-
ple to the negative class will have an accuracy score of
70%, but this largely ignores the strength of the classi-
fier in classifying samples of the positive class correctly.

In many contexts the question surrounding reliable per-
formance measurement is tied to the problem at hand.
For instance, in bioinformatics, the significance of a dis-
covery is tied to whether the false discovery rate, de-
fined as, FP

FP + T P (where FP : False positive and TP :
True Positive) is small enough.

In a similar spirit, the physicists at ATLAS specify an
objective function to be maximized by the classifier. It
is called the Approximate Median Significance metric.
The section below elaborates on the statistical motiva-
tion for its definition.

3.4. Approximate Median Significance (AMS) Metric

The AMS is an objective function that is applied on the
set of points in a region of the feature space where an
excess of signal events is expected over background.
This is the selection region H . The selection region is
defined by the value of the cut-off. For a given clas-
sifier h with a discriminant function f (x) for x ∈ Rd

and cut-off value θ the selection region is defined by,
H = {x : f (x) > θ}.

The total number of events (n) in the selection region of
a classifier h can be partitioned into two groups :

• Selected Background events :

b =
∑

i∈B∩Ĥ

wi

Events which are predicted by the classifier to be
of the positive signal class but actually belong to
the negative class, a false positive.

• Selected Signal events :

s =
∑

i∈S∩Ĥ

wi
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Events which are predicted by the classifier to be
of the positive signal class and do belong to the
positive signal class, a true positive.

The objective function is derived as follows. The oc-
currence of background events follow a Poisson process
(in any part of the feature space, even in the selection re-
gion). Over a given time period during which events are
recorded, the expected number of selected background
events is µb and its variance is also µb (the mean and
variance of a Poisson random variable are identical).
The normalized statistic,

t̂ = (n − µb)/
√
µb ∼ N(0, 1) (3)

where n is the total number of events in the selection
region serves as a test statistic for detection of signal
events. A fluctuation is considered sufficiently large to
claim a discovery of the signal process if it exceeds 5σ,
i.e. if t̂ > 5 given that σ = 1 for the normalized test
statistic.

All events in the selection region of a classifier are pre-
dicted positives, this simplifies the test statistic further,
n which is the total number of events in the selection
region is essentially s + b, and µb which is the expected
number of selected background events (false positives)
can be approximated by its empirical counterpart, b.
Substituting this in 3 gives,

(n − µb)/
√
µb = (s + b − b)/

√
b = s/

√
b (4)

This is the simplified AMS metric, essentially a ratio
of the true positives to false positives. The simplified
AMS metric can be quite noisy as it is entirely depen-
dent on events which a classifier deems as selected, the
predicted positives. This can be very small and can vary
significantly for small changes in classifier design. In
order to make the metric more robust a stable version of
the AMS metric was proposed, it is given by,

AMS s =

√
2((s + b)ln(1 +

s
b

) − s) (5)

Given a classifier h, AMS s is the discovery significance
metric that needs to be optimized.

3.5. AMS and Discovery

In the real experiment, the problem is that of discov-
ering new phenomenon and no examples of real signal
events are available. One would simply count the total
number of events n̂ in the selection regionH . The value
n̂ follows a Poisson distribution with mean ŝ + b̂ where
ŝ and b̂ are the mean number of events from signal and
background processes. If n̂ is found to be much greater
than b̂, then the null hypothesis of background only is
rejected. The significance is quantified by using the p-
value of the background only hypothesis.

The signal events in the simulated dataset are generated
using an elaborate simulator that simulates events ac-
cording to the principles of the Standard Model tak-
ing into account noise and other artifacts. The ma-
chine learning goal in the dataset at hand is to maximize
discovery significance given that the signal process is
present [1].

3.6. AMS vs. Classification metrics

We have seen how the overall classification accuracy is
a weak indicator of the strength of a classifier in the
presence of unbalanced classes. On the other hand, the
direct optimization of the AMS metric is prone to gener-
ating classifiers that overfit the training data as the AMS
metric is fully determined by the small number of events
in the selection regionH = {x : f (x) > θ}.

The value of the AMS is sensitive to the choice of
threshold θ (cut-off for the discriminant score f (x)). An
appropriate θ is chosen by selecting a percentile level
Qk of f (x) where k denotes the percent of values below
Qk. For instance, θ can be chosen as the 80th percentile
of f (x), θ = Q80, this would imply that the selection re-
gionH consists of the top 20% of the values of f (x). To
put it in terms of rejection threshold, this would imply a
rejection threshold of 80%.

Below are the steps required to compute the AMS value
for a classifier h.

1. Select a threshold θ for the discriminant score f (x)
by choosing a percentile level Qk.

2. Compute selected signal s and background events
b using the importance weights provided, as in eq.
2.
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Figure 3: This figure shows the idea of the cut-off (θ) on the discrimi-
nant scores. The points to the right of θ are the predicted positives.

3. Compute AMS s.

It is interesting to note the relationship between the sim-
plified AMS metric s/

√
b and the Receiver Operating

Characteristic (ROC) curve 5. The ROC curve illus-
trates the performance of a binary classifier by plotting
the true positive rate (TPR = TP/P), also called sensi-
tivity against the false positive rate (FPR = FP/N). A
fixed discriminant threshold gives a single TPR and FPR
(a single point on the curve), the curve is generated by
computing the TPR and FPR for different values of the
discriminant threshold. Fig. 4 is an example of ROC
curves for 3 different classifiers.

The 45◦ line denotes a random classifier, which at no
threshold gives a higher TPR than FPR. An ROC curve
that lies above the 45◦ denotes a classifier with higher
than random classification accuracy of positive samples
for all values of the threshold and encloses a larger area
under the curve. A perfect classifier has a TPR = 1 and
FPR = 0 denoting perfect accuracy. The closer the ROC
curve for a classifier is to the upper left corner of the
graph (1,0) the more accurate the classifier. The value
on the x-axis, the FPR is also expressed as (1 - speci-
ficity), where specificity is the true negative rate (TN/N).

The slope of the tangent line to the ROC curve at a fixed

5The rather unusual name ROC emerged during World War II for
the analysis of radar images. Radar operators had to decide whether
a blip on the screen was an enemy target, friendly ship or just noise.
Signal detection theory measures the ability of radar receiver oper-
ators to make these import distinctions. Their ability to do so was
called Receiver Operating Characteristics

Figure 4: ROC curves for classifiers with different levels of prediction
accuracy

threshold is the ratio T PR
FPR . This is also called the posi-

tive likelihood ratio (LR+),

LR+ =
T PR
FPR

=
sensitivity

(1 − speci f icity)
(6)

It is easy to see that this ratio (slope of the tangent line)
is maximised at the extreme upper-left hand corner of
the ROC curve, this is the point that gives the best trade-
off between the true positive rate and false positive rate.
It is a reasonable approach in binary classification try to
maximise the LR+ of a classifier in order to improve its
overall classification accuracy.

Recall that the AMS metric (s/
√

b) is essentially the
ratio of true positives to false positives in a selection re-
gion H specified by a cut-off threshold θ. Maximizing
the AMS is tantamount to maximizing the true positives
and minimizing the false positives in the selection re-
gion. This is very close to the idea of maximizing the
positive likelihood ratio (LR+). However, there are two
fundamental differences between the idea of the AMS
and the ROC.

1. Computing the ratio of true positives to false pos-
itives in the AMS metric is tied to importance
weights associated with samples in the selection
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region,

s
√

b
=

∑
i∈S∩Ĥ wi√∑

i∈B∩Ĥ wi

This distorts the relationship between the likeli-
hood ratio and AMS metric. It is possible to
achieve a higher AMS metric at a point on the ROC
curve where the LR+ ratio is not maximized.

2. The area under the ROC curve, also called AUC or
ROC AUC score integrates over all possible val-
ues of the cut-offs while the AMS considers a sin-
gle point. It is computed by fixing a cut-off and
ignoring all samples outside that cut-off.

The numerator and denominator of the LR+ ratio are
rates rather than counts. The TPR = TP/P and FPR =

FP/N, hence TPR/FPR = (TP/FP)*(N/P). In AMS we
are dealing with counts, the actual number of true posi-
tives and false positives which are estimated as sum over
importance weights. In the absence of weights the two
ratios would be more homogeneous but in the presence
of weights they are more de-linked. It is clear that opti-
mizing the ROC curve is not the same as optimizing for
the AMS.

The precision metric which is calculated as, FP
T P + FP

is also closely related to the AMS metric. The preci-
sion of a classifier is (1 - False Discovery rate (FDR))
where FDR = FP

T P + FP . In a ranked set of events (rank
by value of discriminant score f (x) where the candidate
signals come first), we are interested in estimating with
confidence the fraction of falsely discovered events [1].
This is because highly ranked false discoveries (false
positives) bring the AMS value down as they end up in
the selection region. However, optimizing for precision
or FDR is not an equivalent objective to the AMS as the
former is a mere fraction of correct predictions and does
not incorporate importance weights.

3.7. AMS and Balanced Classification Error

A metric that closely matches the fluctuations in the
AMS must incorporate the importance weights. One
that is proposed by ATLAS physicists is the balanced
classification error. It is defined as,

R( f ) =

n∑
i=1

w′iI{y
pred
i , ytrue

i }. (7)

I is the indicator function. The weights w′i are nor-
malized in both the signal and background classes to
N′b = N′s = 0.5, that is,

w′i = wi ×


1

2Ns
if i ∈ S

1
2Nb

if i ∈ B
(8)

A classifier is trained to minimize the balanced classi-
fication error as in eq. 7. The AMS is then optimized
with respect to a selection threshold θ in the classifier
that classifies according to sign( f (x) − θ). Prior exper-
iments at ATLAS suggest that the AMS is optimized
at a threshold θ yielding a selection region H = {x :
f (x) > θ} that is a small subset of the positive re-
gion {x : f (x) > 0} defined by the balanced classifier
sign( f (x)).

It is important to re-balance the weights used in the clas-
sification error in order to penalize misclassified signals
as severely as misclassified background events. Recall
that the original weights wi for signal events are on aver-
age 300 times smaller than those for background events.

4. Support Vector Machines (SVM)

This section lays the foundation of the SVM algorithm
used on the Higgs dataset. It describes the mathematical
framework of the algorithm and how it is applied to the
task of binary classification. We briefly talk about why
it works as a reasonable classifier on the dataset at hand.

Support vector machines are an extension of the idea
of maximum margin separating hyperplanes. In a bi-
nary classification task of 2-dimensional feature vectors
the maximum margin hyperplane is a linear line that di-
vides the feature space such that the margin between the
points on either side of the line closest to the boundary
is maximized. The notion of margin refers to euclidean
distance.

Points on either side which lie closest to the separating
line are called support vectors, see figure 5. Sections 4.2
and 4.3 will prove that in a general n dimensional fea-
ture space the parameters of the separating hyperplane
are fully determined by the support vectors.

9



Figure 5: Separating hyperplane for a 2-class, 2-feature example

Figure 6: Separating hyperplane for a 2-class, 3 feature example. Note
: in the figure the red and blue classes are not linearly separable.

For a 3-dimensional feature space, the decision bound-
ary is a 2-dimensional plane.

For an n-dimensional feature space the SVM tries to find
an optimal (n − 1)-dimensional separating hyperplane
that divides the n-dimensional space into two parts.

4.1. Equation of a hyperplane

Hyperplanes generalize the usual notion of a plane in
R3. A hyperplane can be expressed as a set of points
satisfying, H = {~x : ~w.~x + b = 0} where ~w ∈ Rn is
the normal vector 6 to the hyperplane, and ~x is an n-
dimensional real vector.

6The normal to the hyperplane is a vector ⊥ to it at a point.

Figure 7: Vector representation of hyperplane

The equation of a hyperplane is defined by a point P0
and a perpendicular vector to the plane ~w at that point.

Let ~x0 = ~OP0 and ~x = ~OP, P is an arbitrary point on the
hyperplane. For P to be on the hyperplane, the vector
~x − ~x0 must be perpendicular to ~w. This implies,

~w.(~x − ~x0) = 0 (9)
~w.~x − ~w. ~x0 = 0 (10)

Defining b = −~w. ~x0 gives,

~w.~x + b = 0

This equation holds for Rn when n > 3.

When the b coefficient changes the hyperplane moves
along the direction of ~w, two hyperplanes with different
b coefficients are parallel to each other. Distance be-
tween parallel hyperplanes ~w.x+b1 = 0 and ~w.x+b2 = 0

is D =
|b1 − b2

||~w||
(|| • || denotes vector length)

4.2. Derivation of the Primal

In the case of linearly separable data we can select two
parallel hyperplanes that separate the two classes such
that the distance between them is as large as possible.
The region bounded by these two parallel planes (see
figure 5), is the margin, and the optimal hyperplane lies
in the midpoint of this region.

We are given a training dataset of N points of the form,
( ~x1, y1), ..., ( ~xN , yN) where the yi are either 1 or -1, each

10



indicating the class label for an n-dimensional data point
~xi.

We introduced a general equation of the hyperplane as
~w.~x + b = 0, we need to find the ~w and b that not only
classifies the points correctly, but do so with the largest
possible margin. Given an unknown data point ~x the
hyperplane acts as a decision boundary for the class to
which it is assigned to.

The projection of the unknown ~x onto wi, i.e. the dot
product ~w.~x gives a number that is proportional to the
length of the normal vector (~a.~b = ||~a||.||~b||cosθ). This
idea promotes the decision rule,

~w.~xi > c, for some constant c ⇒ yi = +1

or, without loss of generality, replacing b = −c,

~w.~xi + b > 0⇒ yi = +1 (11)
~w.~xi + b 6 0⇒ yi = −1 (12)

~w.~xi + b serves as the discriminant function f (x) of the
classifier where classification decisions are based on the
sign( f (~xi)), ~xi is just the vector representation of x ∈
Rd. However, we still do not have enough constraints to
solve for ~w and b.

We introduce two additional constraints insisting that,
the decision rule ~w.~xi + b for positive samples x+

7 gives
a value > 1 and for negative samples x−, gives a value
6 −1. For each i, we insist,

~w. ~x+ + b > 1, if yi = 1 (13)
~w. ~x− + b 6 −1, if yi = −1 (14)

This has the effect of fixing a minimum separation mar-
gin of 2, [-1 to +1] for the parallels to the optimal hyper-
plane. With this condition it is easy to see that points on
either side which lie closest to the optimal hyperplane
will lie on the parallels to the hyperplane and satisfy the

7A positive (negative) sample has a class label yi = +1(−1)

decision function with the equality. This gives the equa-
tions of the parallels to the hyperplane.

~w. ~x+ + b = 1, (15)
~w. ~x− + b = −1, (16)

The points which satisfy the above conditions lie on the
parallels to the hyperplane, recall that these are essen-
tially the support vectors. We will prove in section 4.3
that the parameters ~w and ~b of the optimal hyperplane
are fully determined by these points.

Combining the decision rules in eq. 13 and eq. 14, into
one equation, we can re-write them as,

yi.(~w.~x + b) − 1 > 0, for all 1 6 i 6 n (17)

The distance between the parallels to the optimal hyper-
plane, the margin which we seek to maximize is given
by,

D =
|(b − 1) − (1 + b)|

||~w||
=

2
||~w||

, (18)

This is an important derivation as it suggests that the
margin is independent of b and is only tied to the length
of the normal vector.

Maximizing the margin, amounts to maximizing 2
||~w|| ,

equivalently minimizing ||~w||, or minimizing 1
2 ||~w||

2 (1/2
is used for mathematical convenience in taking deriva-
tives).

In summary the derived problem is,

Minimize 1
2 ||~w||

2 subject to yi.(~w.~x + b) > 1, for all i =

1, ..,N.

This is the primal statement of the SVM. The ~w and b
that solve this minimization determine the optimal hy-
perplane : ~w.~x + b = 0.

The primal is an example of a quadratic programming
problem where we try to minimize a quadratic function

11



subject to linear constraints. An important geometric
interpretation of the constraints is that the data points i
for which the constraint equality holds i.e. points which
satisfy, yi.(~w.~x+b) = 1 are precisely the support vectors.
The constraint is said to be active for the support vectors
and inactive for other data points which lie further away
from the parallels on either side.

4.3. Derivation of the Dual

The primal statement involves optimizing an objective
subject to a constraint. This can be expressed as the
Lagrangian,

L =
1
2
||~w||2 −

N∑
i=1

αi[yi.(~w.~x + b) − 1], (19)

where αi are the Lagrange multipliers.

Taking derivatives w.r.t ~w and b,

∂L/∂~w = ~w −
N∑

i=1

αiyi~xi

⇒ ~w =

N∑
i=1

αiyi~xi (20)

∂L/∂~b = −

N∑
i

αiyi

⇒

N∑
i=1

αiyi = 0 (21)

Substituting conditions 20 and 21 in the Lagragian 19,
we get,

L =
1
2

 N∑
i=1

αiyixi


 N∑

j=1

α jyixi

 −
 N∑

i=1

αiyixi


 N∑

j=1

α jy jx j


−

N∑
i=1

αiyib +

N∑
i=1

αi

Simplifying further,

L =

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiα jyiy jxix j (22)

subject to

αi > 0, for all i = 1...N

N∑
i=1

αiyi = 0

This is the dual of the SVM problem.

The dual formulation provides some important insights
into the SVM algorithm, they are summarized below :

1. The dual structure of the problem highlights that
the optimization problem depends on the dot prod-
uct of pairs of samples (a sample is an input feature
vector), xi.x j.

2. Moreover, the αi’s in the Lagragian in eq. 19 are
zero for ~xi that lie on the correct side of the hy-
perplane (these are the samples for which the con-
straints in eq 17 are inactive) and αi > 0 for the ~xi

that lie on the parallels to the optimal hyperplane
(these are the samples for which the constraints in
eq. 17 are active). This essentially reduces the
dependence of the optimization problem from all
data points N to just the support vectors for which
αi > 0.

3. A new data point ~xk is classified according to the
sign(~w~xk + b) where ~w is expressed as the linear
combination of support vectors as derived in eq.
20. The offset b is recovered by finding a ~xi with
an active constraint and solving, yi(~w~xi + b) = 1.
The discriminant function f (x) of the classifier is,

f (~xk) =

N∑
i=1

αiyixixk + b, (23)

where αi , 0, only for support vectors

Hence, the decision rule depends on the dot prod-
uct of support vectors with the new data point ~xk.
Classification decisions are reached by looking at
sign( f (~xk)).

4. The fact that the entire algorithm depends on dot
products between input feature vectors enables the
use of kernels in the classification problem. The
idea behind using kernels for classification is the
next stage of SVM algorithm, enabling it to learn
in high dimensional spaces. Kernels are described
in the next section.
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Figure 8: Nonlinearly separable classes with 2 features

4.4. The Kernel trick : Non-linearly Separable data

The data for classification is not always linearly sepa-
rable, in this case a linear decision boundary acts as a
weak classifier. Consider such a dataset in figure, 8.
Clearly, there is no linear boundary that could serve as
a decent classifier.

Suppose, we decide to map every data point in the
2 dimensional feature space (x1, x2) using a transfor-
mation (applied to the coordinates of the vector) say,
φ : R2 → R3 defined as,

(x1, x2)→ (x1, x2, x2
1 + x2

2) (24)

This is essentially transforming a 2-dimensional feature
space to a higher dimensional one. The motive behind
this transformation is that given a set of training data
that is not linearly separable, one can achieve linear sep-
arability with a higher probability by projecting the data
onto a higher-dimensional space via some non-linear
transformation φ. This is the statement of Cover’s theo-
rem and serves as a theoretical foundation for the use of
kernel methods in machine learning applications. [5]

The features in the figure 8 are now tranformed using
the transformation function φ defined in eq. 24 Note,

Figure 9: Transformed feature space for data in fig. 8. The z coordi-
nate is given by x2

1 + x2
2

the non-linear transformation of the feature vector ~xi →

φ(~xi) is not the Kernel trick.

Assume for a moment that we have identified a trans-
formation φ which transforms each feature vector ~xi 7→

φ(~xi). The SVM training will occur on the transformed
data points (φ(~x1)...φ(~xN)) and each new label ~xk will
be classified according to the sign of the discriminant
function f (~xk) where,

f (~xk) =

N∑
i=1

αiyiφ(xi)Tφ(xk) + b8 (25)

We noted earlier how the classifier depends upon dot
products of pairs of input feature vectors rather than in-
dividual feature vectors. The dot product in the trans-
formed feature space is φ(xi)Tφ(xk). The action of ex-
plicit computation of coordinates in higher dimensional
space and then taking dot products can be replaced by a
kernel function k which has the key property,

k(~xi, ~x j) = φ(xi)Tφ(x j) = 〈φ(xi), φ(x j)〉M (26)

where 〈·, ·〉M is an inner product in RM .

Kernel functions, K : RN × RN → R essentially enable
computation of dot products between vectors ~xi, ~x j ∈

RN without explicitly transforming them using φ into
RM where M > N. Further, the computation of k(~xi, ~x j)
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may be inexpensive even though φ(xi) may be expen-
sive to calculate due to its high dimensionality. The
main insight is that the SVM can be made to learn in
high dimensional feature space given by φ without ever
explicitly representing the vectors as φ(~xi). This is the
kernel trick.

To make it clear with an example, let x, y ∈ R2, consider
the kernel function,

k(x, y) = (1 + xT y)2 where x, y ∈ R2 (27)

This can be written as,

k(x, y) = 1 + 2xT y + (xT y)2

⇒ 1 + 2x1y1 + 2x2y2 + x2
1y2

1 + x2
2y2

2 + 2x1x2y1y2

⇒ (1 +
√

2x1 +
√

2x2 + x2
1 + x2

2 +
√

2x1x2) ×

(1 +
√

2x1 +
√

2x2 + x2
1 + x2

2 +
√

2x1x2)

⇒ φ(x)Tφy

One advantage of kernel functions is that the complex-
ity of the optimisation remains solely dependent on the
dimensionality of the input space and not of the feature
space. Hence, it is possible to operate in a theoretically
infinite dimensional feature space. We will see in sec-
tion 4.6 how the gaussian kernel corresponds to an infi-
nite dimensional feature mapping φ.

A more intuitive representation of kernels is provided
by Andrew Ng . If two vectors ~x and ~y are close to-
gether, it is reasonable to expect k(~x, ~y) = φ(x)Tφ(y) to
be large. Conversely, if φ(x) and φ(y) are far apart, say
nearly orthogonal to each other - then k(~x, ~y) is likely to
be small. So, k(~x, ~y) can be thought of as a measure of
similarity between two input vectors.

Broadly speaking, given a candidate function k, we can
tell if it could serve as a valid kernel if ∃ a transforma-
tion φ such that,

k(x, y) = φ(x)Tφ(y) ∀x, y ∈ RN (28)

In practice, a selected group of kernels turn out to be
appropriate to use in SVMs and are widely applicable
to a broad class of classification problems.

Table 1: Popular kernel choices for SVM classification

Type Function Parameters

Polynomial k(x, y) = (xT y + θ)d d θ

Gaussian
(Radial Basis
Function)

k(x, y) = e{
−1

2σ2 ||x−y||2} γ = −1
2σ2

Sigmoid
Kernel

k(x, y) = tanh(ηxy +

θ)
η and θ

Spectrum
Kernel
for strings

Count the number of
sub-strings in common

It is a kernel since
it is a dot product
between vectors of
indicators of
substrings.

It is worthwhile mentioning that there is no best choice
in choosing a kernel for a SVM classification problem.
The best approach is to try various kernels, adjust their
parameters via search and minimize the generalization
error.

The discussion surrounding what properties a valid ker-
nel function needs to satisfy is beyond the scope of this
study.

4.5. Kernel SVM

To summarize, the reformulation of the dual under a ker-
nel functions is,

L =

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiα jyiy jk(~xi ~x j) (29)

αi > 0,

N∑
i=1

αiyi = 0 for all i = 1...N

The parameter ~w of the optimal separating hyperplane,
expressed under the non-linear transformation φ is,

~w =

N∑
i=1

αiyi~xi

14



The discriminant function f (x), x ∈ Rd (with a vector
representation ~x) of the classifier is given by the equa-
tion of the hyperplane,

~w.~x + b =

N∑
i=1

αiyik(~xi~x) + b = 0

where αi’s are the optimal lagrange multipliers obtained
by minimizing eq. 29 above and offset b is found by
solving, b = 1 − ~w~xi for a support vector ~xi.

The classification decision for a new data point ~xk is
reached by looking at,

sign( f (xk)) = sign

 N∑
i=1

αiyik(~xi~x) + b

 (30)

Recall, that αi’s are 0 for data points ~xi which lie away
from the margin, the remaining data points are the sup-
port vectors. Hence, the classification decision is en-
tirely dependent on the dot product of support vectors
under a kernel function.

The alphais which > 0 are called the dual coefficients
and temper the role played by each support vector in the
classification decision.

4.6. Gaussian (RBF) Kernel

The gaussian kernel, uses a radial basis function whose
value depends on the notion of euclidean distance from
a point. It is defined as,

k(x, y) = e

(−||x − y||2

2σ2

)
(31)

for two vectors x, y ∈ Rd, ||x − y||2 is the squared eu-
clidean distance between the two vectors. A simpler

definition replacing
1

2σ2 by γ is given by,

k(x, y) = e

(
−γ||x − y||2

)
(32)

This is a reasonable measure of similarity as when x and
y are close, or ||x − y|| is close to 0⇒ k(x, y) is close to
1. Conversely, when x and y are far apart, ⇒ k(x, y) is
close to 0. The value of the RBF kernel conveniently
ranges between zero and one.

By using Taylor’s expansion ex = 1 + x + ... + 1
k! a

k one
can see how exy is a kernel with an infinite set of features
corresponding to polynomial terms, hence its transfor-
mation function φ maps the original feature space to
an infinite dimensional one. The kernel k(x, y) gives a
closed form expression for computing the dot product
in this higher dimensional space even when there isn’t
a way to represent the vector directly in this space. The
main idea is that even if a vector has infinite dimensions
, similarity (expressed as a dot product) between two
vectors in this space has a well-defined value. The ker-
nel expresses the dot product through an equation that
indicates what the similarity value converges to.

A gaussian kernel applied to a support vector is an ex-
ponentially decaying function in the input feature space.
Its maximum value is achieved at the support vector and
it decays uniformly in all directions around the support
vector leading to hyper-spherical contours of the kernel
function. The SVM classifier is just a weighted linear
combination of the kernel function computed between a
data point and each of the support vectors.

The idea of a gaussian kernel can be visualized for a
2-dimensional feature space, where the higher dimen-
sional space is a hyper-surface of bumps and cavities.
Bumps are created for the positive signal class as the
value of the kernel functions is multiplied by yi = 1
the class label (which is always available in supervised
learning) and cavities are created for the negative class
as the kernel value is multiplied by yi = −1 peaking at
the support vectors for each class. A 3d depiction of this
is in fig. 10.

The parameter γ controls the width of the kernel which
determines smoothness. In n-dimensions this parame-
ter can be thought of as controlling the hyper-sphere
of influence of a support vector. Again, the influ-
ence of gamma is easier to visualize in 3d. A small
gamma implies larger variance (as per eq. 32), this leads
to relatively flat peaks around support vectors, giving
smoother decision boundaries and requiring few support
vectors with large spheres of influence in terms of clas-
sification of other points.

A large gamma implies lower variance and in 3d this
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Figure 10: RBF Kernel contour in 3d showing the bumps and cavities
created by the decision values. Retrieved from [6]

Figure 11: The decision boundary of the contour in figure 10 projected
onto 2d. Retrieved from [6]

Figure 12: These graphs depict the shape of a RBF kernel around a
single support vector in 3d space. The top figure depicts a kernel with
γ value of 5 (flatter peak, high variance) and the bottom figure depicts
a γ value of 10 (sharper peak, lower variance). Retrieved from [7]

gives a surface of sharp peaks localizing the influence
of support vectors. The graphs in fig. 12 depict the
influence of three values of gamma, γ = 5, 10

The kernels localization properties make it a strong
choice of kernel for problems which need an arbitrarily
flexible decision boundary. For large γ (low variance)
values, the decision boundary projected onto 2d would
appear as small amorphous patches around the support
vectors separating one class from the other. The depic-
tion of this concept in 2d makes it appear like a k-nearest
neighbour classifier,

Gaussian kernels are universal kernels and give reason-
able classifiers for a wide variety of classification prob-
lems. We use SVMs with gaussian kernels for the sig-
nal/background classification task in the Higgs dataset.
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Figure 13: Illustrating the idea behind slack variables ξi

The localization strength of a RBF kernel also explains
why this is a good choice of kernel in the Higgs dataset
where the classes are largely overlapping.

4.7. Soft Margin SVM

The kernel trick allows the SVM to learn by project-
ing non-linearly separable data to higher dimensional
spaces using transformations and looking for linear
boundaries. By increasing the complexity of these
boundaries one can achieve perfect classification on the
training data but with no real predictive power on the
new data. Kernel SVMs are prone to overfitting unless
carefully controlled for it.

SVMs can be equipped with an additional parameter
that controls for complexity. To introduce this parame-
ter it is best to revisit the primal formulation of the SVM
in Section 4.2. In the simplest case with 2 features and
2 classes where the data cannot be perfectly separated
by a optimal line, one may allow for deviations defined
by ξi > 0 for each individual data point. The points for
which ξi = 0 are on the right side of the boundary given
by the optimal separating line, those with ξi > 1 are on
the incorrect side of the decision boundary. Typically,
ξi’s denote the vertical distance between the data point
~xi and the decision boundary for points on the wrong
side. This is illustrated in fig. 13

The points that lie in the margins on either side but on
the correct side of the boundary have a slack value 0 <
ξi < 1. We can see easily in this example how a linear
boundary acts as a viable classifier as long as we allow
some samples to be misclassified.

All points which lie between the margins are support

vectors and influence classification decisions. Intu-
itively, if the margins are wider, more samples fall in
the enclosing region and each of them is a support vec-
tor. Less linearly separable data separated through a lin-
ear line requires wide margins so more points can be
allowed to lie on the wrong side of the boundary.

In order to build a model with slack variables for each
data point, the SVM objective is modified to include
a penalty term that increases in proportion to the sum
of misclassification distances measured as,

∑N
i=1 ξi. The

penalty term increases linearly with ξi. The modified
soft margin SVM primal is now written as,

Minimize 1
2 ||~w||

2 + C
∑N

i=1 ξi subject to,

yi.(~w.~x + b) > 1 − ξi

ξi > 0
C > 0

for all i = 1,..,N.

The dual is expressed as,

L =
1
2
||~w||2+C

N∑
i=1

ξi−

N∑
i=1

αi[yi.(~w.~x+b)−1+ξi]−
N∑

i=1

riξi

(33)

Differentiation w.r.t ~w and b are identical to eq. 20 and
21, but now we also need to differentiate w.r.t ξi,

∂L/∂ξi = C − αi − ri

⇒ αi = C − ri (34)

Using eq. 20, 21 and 34 to eliminate ~w, b and ξi we
get the identical lagrangian as in the hard margin case,
only with one modified constraint which arises because
ri > 0 ∀i = 1, ...N.

L =

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiα jyiy jk(~xi ~x j) (35)

0 6 αi 6 C,
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Figure 14: Effects of changing C on linear models. Retrieved from [6]
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N∑
i=1

αiyi = 0 for all i = 1...N

Classification decisions are reached in the same way as
in kernel SVMs, eq. 30.

The free parameter C controls the trade-off between
slack variable penalty and the width of the margin or in
other words, model complexity (accuracy) and smooth-
ness of the decision surface. A high C aims at penalizing
misclassified points more and aims to classify all train-
ing sample points correctly, this leads to a model with a
narrow margin. In the presence of kernel this would im-
ply a highly complex decision surface. A low C gives
a wider margin with a smaller penalty on misclassifi-
cation in the training set. This also implies a smoother
decision surface with a lower number of support vectors
each of which with a wider sphere of influence. In hard
margin SVMs C → ∞ and the SVM tries to achieve
perfect classification of the training set. Intuitively, C
is a measure of tolerance towards misclassification in a
model and is an important parameter to be optimized to
obtain models which strike a balance between classifi-
cation error and complexity. The fig. 14 illustrates the
effect of changing C on a linear boundary.

5. Results

In this section we primarily discuss the results obtained
by applying a soft margin SVM with a RBF kernel on
the Higgs dataset. We discuss the optimization process
and report the results of the model performance assessed
mainly by the AMS metric. We also show performance
of the model under other metrics.

5.1. The Model : Soft Margin SVM with Gaussian ker-
nel

For the Higgs dataset we apply a soft margin SVM with
a Gaussian kernel for the binary classification task. The
choice of model is justified due to the following reasons:

1. We are dealing with a high dimensional dataset of
30 features with heavily overlapping class distribu-
tions, a gaussian kernel is a good universal kernel
choice which allows for flexible decision bound-
aries.

Figure 15: Effects of changing C and gamma (RBF Kernel) on a 2-
class overlapping dataset. Retrieved from [8]

2. The Gaussian kernel through the γ parameter al-
lows the user to control and optimize the influence
of support vectors.

3. From the discussion in section 3.4 it is evident that
we are not trying to achieve a perfect classifier with
100% training accuracy but a classifier that gener-
alizes well to test data and is robust to over-fitting.
Hard margin classifiers are a poor choice given that
the optimization objective is not tied to accuracy.

4. The role of the C parameter in the soft margin
SVM model is complementary to the γ parameter,
lower gamma (smooth models) can be made more
complex by selecting a larger C (penalizing mis-
classifications) and higher gamma (complex and
localized) models can be stabilized by selecting
lower C (allowing misclassifications).

5. Since the performance of soft margin SVMs rely
on the optimization of 2 parameters C and γ on
the training data set, the graphical visualization can
provide intuition about the complementary nature
of the parameters.

Complementary nature of C and γ depicted on a small
dataset of two coalesced classes.
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5.2. Pruning of the training set

We have explained in section 4.4 how the classification
decision of an SVM classifier are solely tied to the sup-
port vectors. The support vectors are selected during the
training stage of the algorithm. The selection process of
support vectors is one of the most computationally ex-
pensive parts of the SVM learning process. The training
complexity of a non-linear SVM is typically O(n3) in
the number of training data points. The time complex-
ity of running of an SVM on a new dataset is linear in
the number of support vectors.

Further, the predictive power of an SVM relies entirely
on the support vectors. Hence, an SVM algorithm that
is trained solely on the support vectors should be as ac-
curate as one that is trained on the entire dataset.

The question now is, how can we preselect samples
from a population which have a high likelihood of being
support vectors ?. In the two feature binary class prob-
lem, one can get a good sense of the decision bound-
ary through visualizing the dataset. By selecting sam-
ples which lie around the decision boundary and reject-
ing samples which are away from the intersecting class
clusters.

In higher dimensions it is hard to visualize the decision
boundary and get a good sense of samples which lie on
the intersection of class clusters. A surrogate idea is
to select samples that cluster around the mean feature
value for each of the n features. We call this idea choice
sampling.

Algorithm 1 Choice Sampling
1: for all n features do
2: Compute µi, σi ← mean, std. deviation of the

i-th feature.
3: Select a factor r
4: Choose all samples S i that lie in (µi−rσi, µi+rσi)
5: end for
6: S =

⋂
S i∀i = 1...n

7: return S

A choice sample S was constructed in this manner with
r = 1.6.

The entire dataset has 250,000 rows many of which have
missing values. In this analysis we focus on rows which
have no missing values in any of the features and as
a first step condense the training set by dropping rows

with any missing values. The final size of the condensed
dataset with no missing values was 68114.

At this stage we have a pure sample of 68114 rows and
no missing values, we then split this pure dataset into
a training set (TRAIN) and test set (TEST) by uniform
random selection with each data point equally likely to
fall into either the TRAIN or TEST set. The respec-
tive proportions of the training and test set are 80% and
20%. The TEST set is held-out only to be used for the
final testing stage.

The TRAIN set at this stage has 54491 samples (80% of
the pure sample). The remaining 13623 rows are held
out for testing. The choice sampling algorithm 1 is run
on the TRAIN set to condense the TRAIN set further. A
factor r of 1.6 is used to control the number of standard
deviations away from the mean we want each feature
value to lie in the sample.

The size of the condensed dataset after sampling was
11,600, we call this pure sample set TRAIN CHOICE.
A uniform sample of the same size was chosen on the
pure dataset to compare at a later stage, the differences
between the performance of the SVM classifiers fitted
to them.

5.3. Feature Selection

The feature correlation map is depicted in fig. 16,
it shows the strength of correlation between features
across both classes.

Features that are strongly correlated with other features
represent low discriminating power and can be removed
without much information loss. Redundant features
were identified on the basis of the strength of their corre-
lation with other features and dropped from the dataset.

Since the class variable is dichotomous, yi ∈ {0, 1}∀i,
the feature vs. class correlation is computed using the
point-biserial correlation. This is mathematically equiv-
alent to the Pearson correlation for computing corre-
lations between one continuous and one dichotomous
variable. The point-biserial correlation was computed
between each feature and the binary class variable. It is
computed as,

rpb =
M1 − M0

sn

√
n1n0

n2 (36)
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Figure 16: Feature Correlation map showing the strength of correlation between different features. It is a symmetric display with 1s on the diagonal
showing correlation of a feature with itself. The features that had correlation coefficient values |c| > 0.8 with other features were dropped. From a
group of correlated features only the one with the highest point bi-serial correlation was retained.
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where M0 and M1 are the mean values of the feature
for the background and signal class. sn is the inter-class
standard deviation of the feature, n0 and n1 represent the
count of samples in the background and signal class and
n is the overall count. From figure 17 it is apparent that
the derived features showed higher correlation with the
class label than the primary features 3.2.

5.4. Hyper-parameter Tuning

For an initial search I use a logarithmic base 10 grid with
C ranging from 10−2 to 103 and γ ranging from 10−4 to
100. The graphs below show the effect of varying C and
γ in these ranges on two carefully chosen metrics :

1. ROC AUC score : This is the area under the ROC
curve, although we have delved into why optimiz-
ing the ROC AUC is not equivalent to maximizing
the AMS, it is a good measure of overall classifica-
tion accuracy combining sensitivity and specificity.
We use this metric to identify a broad region of in-
terest.

2. Balanced classification error : This motivation
behind this metric was discussed in section 3.7,
it provides a way to incorporate the importance
weights on each sample in a measure of accuracy.

The base10 grids in fig. 18 help in identifying a
trend which reaffirms the complementary relationship
between C and γ discussed in section 4.7. Viable clas-
sifiers lie on the diagonal of C and γ values, with
the best parameters (C,γ) turning out to be (10,0.01),
(1000,0.001). In the balanced classification error heat
map we observe a similar trend of the stronger classi-
fiers falling on the diagonal where C ranges from 10 to
1000 and γ ranges from 0.001 to 0.01.

At first glance it looks as though optimal parameters
could be found if the grid were to be expanded on the
bottom-left (higher C and lower γ). Indeed, good clas-
sifiers would continue to be found for higher values of
C and proportionately lower γ values. This is the bias-
variance trade off in play in SVM learning. A model
with higher misclassification penalty C and a smooth
decision surface (low γ) can achieve the same predic-
tive power of a model with a lower C but highly com-
plex decision surface (high γ implies narrow localized

Figure 19: Demonstrating that optimal classifiers can always be found
on the diagonal of C and γ

spheres of influence around the support vectors). How-
ever, models with higher C and lower γ are computa-
tionally more expensive that lower C and higher γ, this
is because with a higher misclassification penalty and
smoother decision surface, the SVM is forced to choose
a large number of support vectors to maintain a decent
level of accuracy. A large number of support vectors
implies that a model is slow to predict. Hence, we can
always bound the value of C to a to favour faster and
simpler models and fine tune the γ parameter. This is
something we try and achieve in the next step.

In order to demonstrate that we get equally predictive
classifiers as we go down the diagonal of higher C and
lower γ we expand the score heat map to add two more
additional rows with C = 10000. The plot in fig. 19 was
constructed at the expense of a relatively higher com-
pute time of 60 minutes.

One could argue that a choice sample is a biased sam-
ple, it is a biased sample however given the mathemat-
ical framework of SVM algorithms in which the final
decision function is independent of points which are not
support vectors.

In the next step we construct a finer grid with a base2
step size to narrow down further on the optimal γ pa-
rameter for a value of C that does not exceed 1000.
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Figure 17: The figure shows the strength of correlation of derived features (DER ∗) over the primary features (PRI ∗). Derived jet features showed
higher correlation and analytically derived feature A and B showed higher correlation to any of the primary features.
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Figure 18: Grid search over base 10 grid of C and γ values. The uniform sample and the choice sample give very similar ROC and Balanced
classification error patterns for values of C and γ.
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Figure 20: Grid search over base 10 grid of C and γ values. The uniform sample and the choice sample give very similar ROC and Balanced
classification error patterns for values of C and γ
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Figure 21: Optimized AMS curves for 3 sets of parameters in 2

Parameter⇒ C γ

Blue 10 0.01
Green 100 0.0004
Red 1000 0.0001

Table 2: Best parameters for SVM

5.5. AMS Performance

The AMS performance over a range of thresholds is
summarized in fig. 21.

We choose 3 parameter combinations from the diagonal
(see fig. 20) that gives the lowest balanced classification
error.

Again, we observe the sensitivity of the AMS metric to
the choice of threshold and further, more than one pa-
rameter combination of C and γ give high AMS values.

5.5.1. AMS without CakeA Feature

Figure 22 summarizes the performance of the AMS
on the TEST set with the optimized SVM parameters
(Blue) but without the analytically computed CakeA
feature.

It is hard to quantify in exact terms but there does seem
to be a significant improvement in the AMS score across
the board with the inclusion of CakeA.

Figure 22: AMS without feature A

Metrics Values

Size of grid (for search) 15 × 5 = 75 combinations of (C,γ)
No. of training samples 10000
Cross-validation (CV) 3-fold
Number of fits 225 fits (75 × 3)
CV runtime 4.8 minutes
Runtime of 1 fit 11 seconds

Table 3: SVM Computational Performance

5.6. Computational Performance

An important advantage of using SVMs is that it is
a convex optimization problem that can be success-
fully solved by quadratic programming techniques. The
sklearn package used to build the classifier uses
the Sequential Minimization Optimization (SMO) algo-
rithm which was developed by John Platt (1998) at Mi-
crosoft Research [9]. SMO is an iterative algorithm that
works by breaking the problem into a series of small
sub problems which are then solved analytically. SMO
essentially skips the quadratic programming part alto-
gether. It uses heuristics to choose a pair of Lagrange
multipliers to be considered at each step. In terms of
computational complexity the SMO algorithm yields
anywhere between linear and quadratic complexity de-
pending on the problem. This is an improvement from
the traditional SVM training complexity which is O(n3)
in the number of training data points.

The table 3 below summarizes some of the runtime met-
rics of the SVM algorithm fitted to the Higgs dataset.
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Figure 23: Current top scores for machine learning performance on
the Higgs dataset measured in terms of the AMS

5.6.1. Benchmarking Results

The highest score out of the 1785 published AMS scores
on the Higgs dataset is 3.80. Out of the wide vari-
ety of models used on the datset, the most popular ap-
proaches were neural networks and boosted decision
trees. Further, ensemble models which harmonize the
output of several underlying models were also quite
popular among participants. There were no solutions
in the top 20% of the solutions which used SVMs for
the classification task.

This paper contributes a prototype model whereby the
use of SVMs has been demonstrated on the binary
classification task. With carefully tuned parameters it
achieves scores of well above 3.2 (this was the score on
the benchmark algorithm provided by ATLAS, it uses
boosted decision tree model). The Higgs dataset is chal-
lenging not only because of the overlapping and skewed
class distributions but also because the custom objective
function − the AMS is an unusual one. Direct optimiza-
tion of the AMS is difficult because the value of the met-
ric is susceptible to jumps, this creates a new problem
of trying to find metrics that are closely aligned with the
AMS.

6. Conclusion and Further work

In this paper we followed the approach of carefully con-
densing the size of the dataset provided for training.

This proved to be a worthwhile trade-off between com-
pute time and test performance. It is very interesting
to observe how training on less than 10% of the orig-
inal dataset can yield viable classifiers with accuracies
higher than 80%.

The focus of this paper was to demonstrate the usage
of SVMs on the Higgs classification problem. There are
many ways in which this prototype can be enhanced and
fine-tuned to the specific problem. Some of the ideas are
suggested below,

1. Online SVM which relies on incremental learning
where training data is provided one example at a
time rather than batch mode in which all samples
are provided at once is a classical approach to train-
ing SVMs on large datasets.

2. The dimensionality of the Higgs dataset is not
a bottleneck to training however computational
speed-up in the factor of 5 to 20 can be achieved
by minimizing the number of redundant features
in the dataset. There are several formal approaches
that can be tried, PCA for instance has been tradi-
tionally very successful in enriching high dimen-
sional problems with information about the impor-
tance of each feature through principal component
scores.

3. Using analytical physics features (like CakeA) to
guide the algorithms at the time of training can
prove paramount to maximizing the objective.
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Appendix A. Invariant mass principle

This section is based on [1].

A fundamental equation of special relativity is,

E2 = p2c2 + m2c4

where E is the energy of the particle, p is its momentum,
m is the mass and c is the speed of light. When a parti-
cle is at rest its momentum is 0, this gives us Einstein’s
mass-energy equivalence, E = mc2. Using the units
GeV for Energy, GeV/c for momentum and GeV/c2 for
mass we get the equivalence,

E2 = p2 + m2

The papers published in the ATLAS and CMS experi-
ment use the notation GeV for mass, energy and mo-
mentum. We will follow the same convention.

The momentum p of a particle is actually a 3-
dimensional vector −→p = (px, py, pz) stating the parti-
cle’s momentum in 3 directions in 3-d space. For a par-
ticle with non-zero mass the momentum of a particle is
−→p = m−→v where −→v is the 3-dimensional velocity and m
is the mass. The 4-momentum of a particle is defined as
(px, py, pz, E). This defines the full kinematics of a par-
ticle as if we know the particle’s momentum and energy
we can compute its mass using the relation,

m =

√
E2 − p2

Similarly, if we know any two quantities out of momen-
tum, mass and energy we can compute the third deter-
ministically by equations of special relativity specified
above.

The mass of a particle is an intrinsic property of a par-
ticle, further by the law of conservation of energy and
momentum the mass of a particle is equivalent to the
mass of its decayed products each of which can be rep-
resented by their 4-momentum. For example, a parti-
cle χ decays into two final state particles a and b whose
kinematics are captured in the detector. By conservation
of energy and momentum,

Eχ = Ea + Eb

−→pχ = −→pa + −→pb

The sum of energies and momenta of particles a and b
should resolve to give the energy and momenta of the
parent particle. The mass of the parent particle is then
calculated as,

mχ =

√
E2
χ − p2

χ

This is the invariant mass principle in classical mechan-
ics. It holds for all particles including the Higgs boson
and can be generalised to more than two final states and
holds in every intermediate stage of decay.

Appendix B. Physical meaning of Features

In the 3-d reference frame, we assume the z-axis to
be the horizontal beam line. Transverse quantities are
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quantities projected on the plane perpendicular to the
beam line, this is the x − y plane. We stated earlier that
the primary ingredients needed to compute the charac-
teristics of the parent particle are the 4-momentum vec-
tors (px, py, pz, E) for each of the decay products. The
primary features in our dataset are quantities derived
from the raw 4-momentum coordinates. These physi-
cal quantities constructed by ATLAS physicsts capture
properties of the decay channel most critical to the in-
ference of the parent particle. Below we describe these
quantities which are used as features in our problem.
The dataset comprises these quantities for each particle
in the final-state of the collision. [1]

Pseudorapidity (η) : This describes the angle of the
particle relative to the beam axis. It is defined as,

η = −ln[tan(θ/2)]

where θ denotes the angle between the particle and the
positive direction of the beam axis. The diagram below
depicts the concept,

η = 0 corresponds to a particle in the x − y plane per-
pendicular to the beam line, η = +∞ corresponds to a
particle travelling along the z-axis in the positive direc-
tion and η = −∞ denotes travel in the opposite direction.
Particles with high η are usually lost and not captured by
the detector.

Particles can be identified in the range η ∈ [−2.5 + 2.5],
for |η| ∈ [2.5, 5], their momentum can be measured but
the particle cannot be identified. Particles with |η| > 5
escape detection all together [1].

Azimuth Angle (φ) : Decay particles shoot out from the
vertex of the collision which lies on the z-axis. The vec-
tor from the vertex to the particle is projected onto the

transverse plane (x−y), the angle between the projected
vector and the x-axis is the azimuth angle.

Transverse momentum (t) : The transverse momen-
tum can be defined as the momentum that materializes
in the x−y plane perpendicular to the beam axis. A hard
collision event is characterized by a high t, while proton
collisions that result from protons brushing against each
other leave decay particles not too far from the beam
axis resulting in a small t.

The transverse momentum is computed as,

t =

√
p2

x + p2
y

.
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