
Deconstructing Gaussian Processes

Bonus Part: Hamiltonian Monte Carlo

Vidhi Lalchand

Department of Physics

University of Cambridge

3rd December 2019

Outline

1. Tackling the nomenclature

2. Gaussian Processes

3. Where Deep Learning falls short

4. Advances in Gaussian Process

5. Inference: Hamiltonian Monte Carlo

1

Non-probabilistic vs. Probabilistic Machine Learning

• Step 1: Data D = {xi , yi}Ni=1 + Parametric model, eg:

yi = w1xi + b1, θ = {w1, b1}.

• Step 2: Train the model → ‘learn’ the parameters θ =
{
ŵ1, b̂1

}
.

• Step 3: Make predictions for unseen x∗ by plugging in,

y∗ = ŵ1x∗ + b̂1.

Training step: argmin
θ
L(θ)

Parameters θ are fixed, unknown quantities

2

Non-probabilistic vs. Probabilistic Machine Learning

• Step 1: Data (X , y) = {xi , yi}Ni=1 + Parametric model, eg:

yi = w1xi + b1, θ = {w1, b1}.
• Step 2: Specify data likelihood p(y |θ) and prior p(θ)

• Step 3: Inference step → ‘learn’ the posterior distribution p(θ|X , y)

over parameters θ =
{
ŵ1, b̂1

}
• Step 4: Prediction step: p(y∗|x∗, y) =

∫
p(y∗|x∗, y , θ)p(θ|y)dθ

Training step: p(θ|y) =
p(y |θ)p(θ)

p(y)
where p(y) =

∫
p(y |θ)p(θ)dθ

3

Predictions: Point estimates vs. Distributions

Conventional Bayesian

θ=(β0 ,β1)

Fixed, unknown quantities Random variables

4

Parametric Regression

Model complexity has to be explicitly calibrated.

5

Non-parametric Regression

Automatic calibration of model complexity.

6

The non-parametric approach

• We don’t select the functional form of the model, ((((((
y = β0 + β1x .

• It is ”letting the data speak for itself” → the model becomes more

complex as the size and the complexity of the data grow.

• The model structure (a.k.a functional form) and the parameters are

both part of the ”learning” in a non-parametric model.

7

The non-parametric approach

• We don’t select the functional form of the model, ((((((
y = β0 + β1x .

• It is ”letting the data speak for itself” → the model becomes more

complex as the size and the complexity of the data grow.

• The model structure (a.k.a functional form) and the parameters are

both part of the ”learning” in a non-parametric model.

7

The non-parametric approach

• We don’t select the functional form of the model, ((((((
y = β0 + β1x .

• It is ”letting the data speak for itself” → the model becomes more

complex as the size and the complexity of the data grow.

• The model structure (a.k.a functional form) and the parameters are

both part of the ”learning” in a non-parametric model.

7

Gaussian Processes

7

What is a GP?

The most intuitive way of understanding GPs is understanding the

correspondence between Gaussian distributions and Gaussian Processes.

(a) samples from a univariate gaussian distribu-

tion

(b) samples from a bi-variate gaussian distribution

8

What is a GP?

GPs are just Gaussian probability distributions of random functions f (x),

hence sampling from a Gaussian process gives functions f (x).

f (x) ∼ GP(m(x), k(x , x ′)) (1)

where m(x) represents the mean function and k(x , x ′) represents a

covariance function.

9

Primer: Functions as infinite vectors

1. When we think of a ‘function’ in a mathematical sense we

immediately try to think of a parametric form. For example,

5x − 2, x2, 3x3 − x , ex .

2. But in GP world there is a fundamental shift in thinking about

functions. We completely abandon the parametric form

viewpoint.

3. Think of functions as a vector of infinite length

f (x) = [f (x1), f (x2)]

4. GPs represent functions f (x) obliquely (but rigorously) by selecting

the covariance function k(x , x ′).

10

Primer: Marginals and Conditionals

Gaussians have some really nice properties:[
x1
x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

ΣT
12 Σ22

])

Marginalisation is trivial. Just ignore dimensions you don’t want.

x1 ∼ N (µ1,Σ11) (2)

Conditioning is straightforward:

x1|x2 ∼ N(µ3,Σ3)

where, µ3 = µ1 + Σ12Σ−122 (A2 − µ2)

Σ3 = Σ11 − Σ12Σ−122 Σ21

(x2|x1 can be evaluated using symmetry)

11

Rigorous definition

A GP is a collection of random variables, any finite number of which have

a joint Gaussian distribution. Infinite dimensional analogue:

f (x) ∼ GP(m(x), k(x , x ′))

where m represents the mean function and k(x , x ′) represents a

covariance function.

In order to compute with GPs we only use finite subsets of this infinite

dimensional space.
f1
...

f499
f500

 ∼ N


µ1

...

µ499

µ500

 ,


k(x1, x1) k(x1, k500)
...

. . .
...

...
. . .

...

k(x500, x1) k(x500, k500)




In going from finite to infinite we are marginalising out everything not in

our index set x = [x1, x2, . . . , . . . , x500].

12

Rigorous definition

GPs induce a prior over random functions f (x):

Samples from a GP with the squared exponential kernel

k(x1, x2) = σ2
f exp{− (x1 − x2)2

2γ2
}, with hyperparameter vector {σ2

f , γ}

13

Structure with Kernels

14

Gaussian Process Regression

1. Observe some noisy data y = {yi}Ni=1 at X input locations.

2. Standard regression set-up y = f (x) + ε, ε ∼ N (0, σ2
n).

3. Data Likelihood: y |f ∼ N (f (x), σ2)

4. Specify GP Prior: f ∼ GP(0, kθ)

We want to infer latent function values f∗ at arbitrary input locations X∗,

or in other words we want p(f∗|X∗, y , θ).

Joint distribution:

p(f , f∗) = N

(
0,

[
K (X ,X) K (X ,X∗)

K (X∗,X) K (X∗,X∗)

])
= N

(
0,

[
K KT

∗
K∗ K∗∗

])

p(y , f∗) = N

(
0,

[
K + σ2I KT

∗
K∗ K∗∗

])

15

Learning and Inference

Conditional:

p(f∗|y) = N (µ∗, Σ∗)

µ∗ = K∗(Kθ + σ2
n)−1f

Σ∗ = K∗∗ − K∗(Kθ + σ2
n)−1KT

∗

16

Learning in a GP

Learning occurs through adapting the hyperparameters of the kernel

function to the data. The objective that is used for this adaptation is the

marginal likelihood.

θ? = argmax
θ
L(θ)

p(y) =

∫
p(y |f)p(f)df = N (0,K + σ2I)

where,L(θ) = log p(y) = −

model fit︷ ︸︸ ︷
1

2
yT (Kθ + σ2

n)−1y −

complexity penalty︷ ︸︸ ︷
1

2
log |Kθ + σ2

nI| −
−n
2

log2π

Inference: Plug in θ∗ in the conditional distribution.

p(f∗|y) = N (µ∗, Σ∗)

µ∗ = K∗(Kθ + σ2
n)−1f

Σ∗ = K∗∗ − K∗(Kθ + σ2
n)−1KT

∗ 17

Learning in a GP

The over-fitted and under-fitted models are not favoured by the marginal

likelihood.

log p(y) = −

model fit︷ ︸︸ ︷
1

2
yT (Kθ + σ2

n)−1y −

complexity penalty︷ ︸︸ ︷
1

2
log |Kθ + σ2

nI| −
−n
2

log2π
18

Encoding rich structure

19

Composite Kernel

1
1David Duvenaud. “Automatic model construction with Gaussian processes”. PhD thesis.

University of Cambridge, 2014.

20

2d Regression

2

The composite kernels picks up on unseen structure about the original function.

2David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. “Additive gaussian processes”. In:

Advances in neural information processing systems. 2011, pages 226–234.

21

Probabilistic and Non-parametric

1. It takes learning one step further by automatically calibrating model

complexity. So, the model is learnt rather than chosen or fixed.

2. Prediction Uncertainty - a fitted model needs to know when it does

not know.

3. Other Models: Dirichlet Processes, Infinite Mixture Models

22

Probabilistic and Non-parametric

1. It takes learning one step further by automatically calibrating model

complexity. So, the model is learnt rather than chosen or fixed.

2. Prediction Uncertainty - a fitted model needs to know when it does

not know.

3. Other Models: Dirichlet Processes, Infinite Mixture Models

22

Summary

• GPs are a powerful probabilistic and non-parametric paradigm for

modelling non-linear functions in low and high dimensions.

• They are expensive to train as the cost of inverting a matrix of size

N is O(N3).

• Memory requirements for storing a matrix of size N is O(N2).

• Choosing or designing the right kernel is a bit of a black art.

23

1 slide on Neural Nets

Using deep architectures for modelling functions, capturing non-linear

relationships or structure inherent in high dimensional data.

24

Where Deep learning falls short

• Cannot probe deep learning using statistical theory or probability

calculus (unless you use Bayesian Neural Nets.)

• Very compute intensive and data hungry.

• Non-convexity of loss surface, catastrophic local minima / saddle

point problem.

• Neural architecture, learning rate, activation functions all have to be

selected before training and most of the times these choices are not

theoretically guided.

25

Where Deep learning falls short

• Cannot probe deep learning using statistical theory or probability

calculus (unless you use Bayesian Neural Nets.)

• Very compute intensive and data hungry.

• Non-convexity of loss surface, catastrophic local minima / saddle

point problem.

• Neural architecture, learning rate, activation functions all have to be

selected before training and most of the times these choices are not

theoretically guided.

25

Where Deep learning falls short

• Cannot probe deep learning using statistical theory or probability

calculus (unless you use Bayesian Neural Nets.)

• Very compute intensive and data hungry.

• Non-convexity of loss surface, catastrophic local minima / saddle

point problem.

• Neural architecture, learning rate, activation functions all have to be

selected before training and most of the times these choices are not

theoretically guided.

25

Where Deep learning falls short

• Cannot probe deep learning using statistical theory or probability

calculus (unless you use Bayesian Neural Nets.)

• Very compute intensive and data hungry.

• Non-convexity of loss surface, catastrophic local minima / saddle

point problem.

• Neural architecture, learning rate, activation functions all have to be

selected before training and most of the times these choices are not

theoretically guided.

25

Loss Surface

26

Advanced Gaussian Processes: Sparsity

Sparse Gaussian Processes

3

3John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. “Probabilistic programming in

Python using PyMC3”. In: PeerJ Computer Science 2 (2016), e55.

27

Advanced Gaussian Processes: Deep Kernels

4
4Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. “Deep kernel

learning”. In: Artificial Intelligence and Statistics. 2016, pages 370–378.
28

Resources: Probabilistic programming

STAN (C++ backend with custom syntax)

pymc3

GPFlow (tf)

Edward

GPytorch

All offer HMC and Variational Inference

29

Hamiltonian Monte Carlo

29

HMC is a fundamental tool for MCMC inference in advanced GP models.

It hinges on using gradient information to suppress random walk

behaviour.

Here we look at the standard form of the algorithm.

30

On Probabilistic Machine Learning

• Posterior Inference (computing p(θ|y)) is intractable in most models

which are used in production.

• p(θ|y) =
p(y |θ)p(θ)

p(y)
where p(y) =

∫
p(y |θ)p(θ)dθ

• Inference step: Sample θi ∼ p(θ|y) using HMC.

• Prediction step: p(y∗|x∗, y) =
1

M

∑M
i=1 p(y∗|x∗, y , θi)

31

The physics picture

The Hamiltonian H(p, q) defines the phase space of the physical system

in terms of a position vector q and a momentum vector p. Hamiltonian

mechanics describe the time evolution of a physical system in terms of

Hamilton’s equations

dq

dt
=
∂H
∂p

(3)

dp

dt
=
−∂H
∂q

(4)

Consider a closed system of a friction-less particle moving along a surface

of varying height. The partial derivatives w.r.t time define a mapping of

the state from any time t to the state at any time t + s.

32

Hamiltonian Dynamics →MCMC

The Hamiltonian admits a decomposition in terms of potential and

kinetic energy,

H(p.q) = V (q) + K (p)

The task is to sample from a density p(x) (typically, a posterior density),

in order to facilitate the use of the dynamics, we augment with

momentum variable p ∼ (0,M) and define a joint density,

p(x ,p) = p(x)p(p) ∝ e−H(x,p)

where the negative log-joint has the form,

H(x ,p) = − log p(x) +
1

2
pTM−1p

33

Hamiltonian Dynamics →MCMC

Define,

V (q) = − log p(x),

K (p) =
1

2
pTM−1p

So x , the variable of interest plays the role of the position coordinate q

and K (p) corresponds to minus log probability density of a zero mean

Gaussian with covariance matrix M.

With these forms Hamilton’s equations become,

dq

dt
=
∂H

∂p
= M−1p

dp

dt
= −∂H

∂q
= −∂V

∂q

(Side Note: V (q) = −log [π(q)L(q|y)], for simplicity of notation we just use

p(q) to denote the posterior or target) 34

Canonical HMC

5
The trajectories follow the isocontours of the Hamiltonian

HMC

1: Given q0, ε, L,M

2: for t = 1, . . . , N do

3: Sample momentum pt ∼ N (0,M)

4: Leapfrog (qt , pt)→ (qt+εL, pt+εL) \\depends on L, ε and current state

5: Draw u ∼ Unif [0, 1]

6: if u < min[1, exp(H(qt , pt)− H(qt+εL, pt+εL)]

7: (qt+1, pt+1) = (qt+εL, pt+εL)

8: else

9: (qt+1, pt+1) = (qt , pt)

10: end for

5betancourt2017conceptual.

35

HMC: Leapfrog Integrator

Hamilton’s equation are not explicitly solvable, instead they must be

approximated by discretizing time using a small finite step size ε.

Leapfrog: (qt , pt)→ (qt+εL, pt+εL)

1: for j = 1, . . . , L do

2: pt+ε/2 = pt − (ε/2)
∂V

∂q
|qt

3: qt+ε = qt + εM−1(pt+ε/2)

4: pt+ε = pt+ε/2 − (ε/2)
∂V

∂q
|qt+ε

5: end for

Leapfrog method traces out an approximate Hamiltonian trajectory in

phase space.

36

HMC: Leapfrog Integrator

6

The effect of step-size on the discretisation error, path length L = 20 and

H(q, p) = q2/2 + p2/2

6neal2011mcmc.

37

Properties

1. Reversibility: The mapping (qt , pt)→ (qt+s , pt+s) is 1-1.

2. Conservation of the Hamiltonian: The dynamics keep the

Hamiltonian invariant
∂H

∂t
= 0

3. Symplecticness: The phase space (q, p) of a Hamiltonian system is

a symplectic manifold.

2. is not achieved exactly as we simulate dynamics numerically using the

leapfrog method.

38

HMC on a warped Gaussian

7

7lan2016emulation.

39

HMC on a warped Gaussian

ε = 0.05, L = 20, showing accepted proposals from 100 trajectories.

40

HMC in practice

Performance of HMC depends on choosing suitable values for ε and L.

1. ε too small → Inefficient exploration.

2. ε too large → Will miss areas of the target density with a small

spatial scale, higher rejection rate.

3. L too small → Slow mixing, resembling random-walk.

4. L too large → Redundant computation due to cyclical nature of

trajectories.

41

Thank you!

vr308@cam.ac.uk

@VRLalchand

41

