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Non-probabilistic vs. Probabilistic Machine Learning

• Step 1: Data D = {xi , yi}Ni=1 + Parametric model, eg:

yi = w1xi + b1, θ = {w1, b1}.

• Step 2: Train the model → ‘learn’ the parameters θ =
{
ŵ1, b̂1

}
.

• Step 3: Make predictions for unseen x∗ by plugging in,

y∗ = ŵ1x∗ + b̂1.

Training step: argmin
θ
L(θ)

Parameters θ are fixed, unknown quantities
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Non-probabilistic vs. Probabilistic Machine Learning

• Step 1: Data (X , y) = {xi , yi}Ni=1 + Parametric model, eg:

yi = w1xi + b1, θ = {w1, b1}.
• Step 2: Specify data likelihood p(y |θ) and prior p(θ)

• Step 3: Inference step → ‘learn’ the posterior distribution p(θ|X , y)

over parameters θ =
{
ŵ1, b̂1

}
• Step 4: Prediction step: p(y∗|x∗, y) =

∫
p(y∗|x∗, y , θ)p(θ|y)dθ

Training step: p(θ|y) =
p(y |θ)p(θ)

p(y)
where p(y) =

∫
p(y |θ)p(θ)dθ
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Predictions: Point estimates vs. Distributions

Conventional Bayesian

θ=(β0 ,β1)

Fixed, unknown quantities Random variables 
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Parametric Regression

Model complexity has to be explicitly calibrated.
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Non-parametric Regression

Automatic calibration of model complexity.
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The non-parametric approach

• We don’t select the functional form of the model, ((((((
y = β0 + β1x .

• It is ”letting the data speak for itself” → the model becomes more

complex as the size and the complexity of the data grow.

• The model structure (a.k.a functional form) and the parameters are

both part of the ”learning” in a non-parametric model.
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Gaussian Processes
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What is a GP?

The most intuitive way of understanding GPs is understanding the

correspondence between Gaussian distributions and Gaussian Processes.

(a) samples from a univariate gaussian distribu-

tion

(b) samples from a bi-variate gaussian distribution
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What is a GP?

GPs are just Gaussian probability distributions of random functions f (x),

hence sampling from a Gaussian process gives functions f (x).

f (x) ∼ GP(m(x), k(x , x ′)) (1)

where m(x) represents the mean function and k(x , x ′) represents a

covariance function.
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Primer: Functions as infinite vectors

1. When we think of a ‘function’ in a mathematical sense we

immediately try to think of a parametric form. For example,

5x − 2, x2, 3x3 − x , ex .

2. But in GP world there is a fundamental shift in thinking about

functions. We completely abandon the parametric form

viewpoint.

3. Think of functions as a vector of infinite length

f (x) = [f (x1), f (x2) . . . . . .]

4. GPs represent functions f (x) obliquely (but rigorously) by selecting

the covariance function k(x , x ′).
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Primer: Marginals and Conditionals

Gaussians have some really nice properties:[
x1
x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

ΣT
12 Σ22

])

Marginalisation is trivial. Just ignore dimensions you don’t want.

x1 ∼ N (µ1,Σ11) (2)

Conditioning is straightforward:

x1|x2 ∼ N(µ3,Σ3)

where, µ3 = µ1 + Σ12Σ−122 (A2 − µ2)

Σ3 = Σ11 − Σ12Σ−122 Σ21

(x2|x1 can be evaluated using symmetry)

11



Rigorous definition

A GP is a collection of random variables, any finite number of which have

a joint Gaussian distribution. Infinite dimensional analogue:

f (x) ∼ GP(m(x), k(x , x ′))

where m represents the mean function and k(x , x ′) represents a

covariance function.

In order to compute with GPs we only use finite subsets of this infinite

dimensional space.
f1
...

f499
f500

 ∼ N


µ1

...

µ499

µ500

 ,


k(x1, x1) . . . . . . k(x1, k500)
...

. . .
...

...
. . .

...

k(x500, x1) . . . . . . k(x500, k500)




In going from finite to infinite we are marginalising out everything not in

our index set x = [x1, x2, . . . , . . . , x500].
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Rigorous definition

GPs induce a prior over random functions f (x):

Samples from a GP with the squared exponential kernel

k(x1, x2) = σ2
f exp{− (x1 − x2)2

2γ2
}, with hyperparameter vector {σ2

f , γ}
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Structure with Kernels
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Gaussian Process Regression

1. Observe some noisy data y = {yi}Ni=1 at X input locations.

2. Standard regression set-up y = f (x) + ε, ε ∼ N (0, σ2
n).

3. Data Likelihood: y |f ∼ N (f (x), σ2)

4. Specify GP Prior: f ∼ GP(0, kθ)

We want to infer latent function values f∗ at arbitrary input locations X∗,

or in other words we want p(f∗|X∗, y , θ).

Joint distribution:

p(f , f∗) = N

(
0,

[
K (X ,X ) K (X ,X∗)

K (X∗,X ) K (X∗,X∗)

])
= N

(
0,

[
K KT

∗
K∗ K∗∗

])

p(y , f∗) = N

(
0,

[
K + σ2I KT

∗
K∗ K∗∗

])
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Learning and Inference

Conditional:

p(f∗|y) = N (µ∗, Σ∗)

µ∗ = K∗(Kθ + σ2
n)−1f

Σ∗ = K∗∗ − K∗(Kθ + σ2
n)−1KT

∗
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Learning in a GP

Learning occurs through adapting the hyperparameters of the kernel

function to the data. The objective that is used for this adaptation is the

marginal likelihood.

θ? = argmax
θ
L(θ)

p(y) =

∫
p(y |f )p(f )df = N (0,K + σ2I)

where,L(θ) = log p(y) = −

model fit︷ ︸︸ ︷
1

2
yT (Kθ + σ2

n)−1y −

complexity penalty︷ ︸︸ ︷
1

2
log |Kθ + σ2

nI| −
−n
2

log2π

Inference: Plug in θ∗ in the conditional distribution.

p(f∗|y) = N (µ∗, Σ∗)

µ∗ = K∗(Kθ + σ2
n)−1f

Σ∗ = K∗∗ − K∗(Kθ + σ2
n)−1KT

∗ 17



Learning in a GP

The over-fitted and under-fitted models are not favoured by the marginal

likelihood.

log p(y) = −

model fit︷ ︸︸ ︷
1

2
yT (Kθ + σ2

n)−1y −

complexity penalty︷ ︸︸ ︷
1

2
log |Kθ + σ2

nI| −
−n
2

log2π
18



Encoding rich structure
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Composite Kernel

1
1David Duvenaud. “Automatic model construction with Gaussian processes”. PhD thesis.

University of Cambridge, 2014.
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2d Regression

2

The composite kernels picks up on unseen structure about the original function.

2David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. “Additive gaussian processes”. In:

Advances in neural information processing systems. 2011, pages 226–234.
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Probabilistic and Non-parametric

1. It takes learning one step further by automatically calibrating model

complexity. So, the model is learnt rather than chosen or fixed.

2. Prediction Uncertainty - a fitted model needs to know when it does

not know.

3. Other Models: Dirichlet Processes, Infinite Mixture Models

22



Probabilistic and Non-parametric

1. It takes learning one step further by automatically calibrating model

complexity. So, the model is learnt rather than chosen or fixed.

2. Prediction Uncertainty - a fitted model needs to know when it does

not know.

3. Other Models: Dirichlet Processes, Infinite Mixture Models

22



Summary

• GPs are a powerful probabilistic and non-parametric paradigm for

modelling non-linear functions in low and high dimensions.

• They are expensive to train as the cost of inverting a matrix of size

N is O(N3).

• Memory requirements for storing a matrix of size N is O(N2).

• Choosing or designing the right kernel is a bit of a black art.
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1 slide on Neural Nets

Using deep architectures for modelling functions, capturing non-linear

relationships or structure inherent in high dimensional data.

24



Where Deep learning falls short

• Cannot probe deep learning using statistical theory or probability

calculus (unless you use Bayesian Neural Nets.)

• Very compute intensive and data hungry.

• Non-convexity of loss surface, catastrophic local minima / saddle

point problem.

• Neural architecture, learning rate, activation functions all have to be

selected before training and most of the times these choices are not

theoretically guided.
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Loss Surface
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Advanced Gaussian Processes: Sparsity

Sparse Gaussian Processes

3

3John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. “Probabilistic programming in

Python using PyMC3”. In: PeerJ Computer Science 2 (2016), e55.
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Advanced Gaussian Processes: Deep Kernels

4
4Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. “Deep kernel

learning”. In: Artificial Intelligence and Statistics. 2016, pages 370–378.
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Resources: Probabilistic programming

STAN (C++ backend with custom syntax)

pymc3

GPFlow (tf)

Edward

GPytorch

All offer HMC and Variational Inference
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Hamiltonian Monte Carlo
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HMC is a fundamental tool for MCMC inference in advanced GP models.

It hinges on using gradient information to suppress random walk

behaviour.

Here we look at the standard form of the algorithm.
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On Probabilistic Machine Learning

• Posterior Inference (computing p(θ|y)) is intractable in most models

which are used in production.

• p(θ|y) =
p(y |θ)p(θ)

p(y)
where p(y) =

∫
p(y |θ)p(θ)dθ

• Inference step: Sample θi ∼ p(θ|y) using HMC.

• Prediction step: p(y∗|x∗, y) =
1

M

∑M
i=1 p(y∗|x∗, y , θi )
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The physics picture

The Hamiltonian H(p, q) defines the phase space of the physical system

in terms of a position vector q and a momentum vector p. Hamiltonian

mechanics describe the time evolution of a physical system in terms of

Hamilton’s equations

dq

dt
=
∂H
∂p

(3)

dp

dt
=
−∂H
∂q

(4)

Consider a closed system of a friction-less particle moving along a surface

of varying height. The partial derivatives w.r.t time define a mapping of

the state from any time t to the state at any time t + s.
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Hamiltonian Dynamics →MCMC

The Hamiltonian admits a decomposition in terms of potential and

kinetic energy,

H(p.q) = V (q) + K (p)

The task is to sample from a density p(x) (typically, a posterior density),

in order to facilitate the use of the dynamics, we augment with

momentum variable p ∼ (0,M) and define a joint density,

p(x ,p) = p(x)p(p) ∝ e−H(x,p)

where the negative log-joint has the form,

H(x ,p) = − log p(x) +
1

2
pTM−1p
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Hamiltonian Dynamics →MCMC

Define,

V (q) = − log p(x),

K (p) =
1

2
pTM−1p

So x , the variable of interest plays the role of the position coordinate q

and K (p) corresponds to minus log probability density of a zero mean

Gaussian with covariance matrix M.

With these forms Hamilton’s equations become,

dq

dt
=
∂H

∂p
= M−1p

dp

dt
= −∂H

∂q
= −∂V

∂q

(Side Note: V (q) = −log [π(q)L(q|y)], for simplicity of notation we just use

p(q) to denote the posterior or target) 34



Canonical HMC

5
The trajectories follow the isocontours of the Hamiltonian

HMC

1: Given q0, ε, L,M

2: for t = 1, . . . , N do

3: Sample momentum pt ∼ N (0,M)

4: Leapfrog (qt , pt)→ (qt+εL, pt+εL) \\depends on L, ε and current state

5: Draw u ∼ Unif [0, 1]

6: if u < min[1, exp(H(qt , pt)− H(qt+εL, pt+εL)]

7: (qt+1, pt+1) = (qt+εL, pt+εL)

8: else

9: (qt+1, pt+1) = (qt , pt)

10: end for

5betancourt2017conceptual.

35



HMC: Leapfrog Integrator

Hamilton’s equation are not explicitly solvable, instead they must be

approximated by discretizing time using a small finite step size ε.

Leapfrog: (qt , pt)→ (qt+εL, pt+εL)

1: for j = 1, . . . , L do

2: pt+ε/2 = pt − (ε/2)
∂V

∂q
|qt

3: qt+ε = qt + εM−1(pt+ε/2)

4: pt+ε = pt+ε/2 − (ε/2)
∂V

∂q
|qt+ε

5: end for

Leapfrog method traces out an approximate Hamiltonian trajectory in

phase space.
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HMC: Leapfrog Integrator

6

The effect of step-size on the discretisation error, path length L = 20 and

H(q, p) = q2/2 + p2/2

6neal2011mcmc.
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Properties

1. Reversibility: The mapping (qt , pt)→ (qt+s , pt+s) is 1-1.

2. Conservation of the Hamiltonian: The dynamics keep the

Hamiltonian invariant
∂H

∂t
= 0

3. Symplecticness: The phase space (q, p) of a Hamiltonian system is

a symplectic manifold.

2. is not achieved exactly as we simulate dynamics numerically using the

leapfrog method.
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HMC on a warped Gaussian

7

7lan2016emulation.
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HMC on a warped Gaussian

ε = 0.05, L = 20, showing accepted proposals from 100 trajectories.

40



HMC in practice

Performance of HMC depends on choosing suitable values for ε and L.

1. ε too small → Inefficient exploration.

2. ε too large → Will miss areas of the target density with a small

spatial scale, higher rejection rate.

3. L too small → Slow mixing, resembling random-walk.

4. L too large → Redundant computation due to cyclical nature of

trajectories.
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Thank you!

vr308@cam.ac.uk

@VRLalchand
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